какой механизм проверки на наличие ошибок используется в ethernet

Контрольные вопросы по Ethernet

какой механизм проверки на наличие ошибок используется в ethernet

какой механизм проверки на наличие ошибок используется в ethernet

Контрольные вопросы по Ethernet

Вопрос №1. В каких топологиях может работать технология Ethernet?

Bus, Star, Full Mesh, Tree

Для проверки на наличие ошибок используется контрольная сумма кадра, которая вычисляется перед отправкой кадра. Значение суммы вставляется в конец кадра. На приеме вычисляется новая контрольная сумма и сравнивается с полученной. Если оба значения равны, то кадр принимается к дальнейшей обработке, в противном случае уничтожается.

Вопрос №3. В какой последовательности подключены пины в перекрестном кабеле?

Вопрос №4. При каком режиме коммутатор не анализирует кадры на наличие ошибок?

Благодаря чипам ASIC

Вопрос №6. Как называется трафик, получателем которого является один конкретный хост?

Вопрос №7. Сколько доменов коллизий присутствует в сети?

какой механизм проверки на наличие ошибок используется в ethernet

Вопрос №8. Каким цветом загорается индикатор RPS при подаче резервного питания коммутатору, в котором установлен?

Вопрос №9. К портам коммутатора подключили концентратор, компьютер и другой коммутатор. Какова будет индикация DUPLX на портах коммутатора, к которым подключены вышеперечисленные устройства? Все настройки выставлены по умолчанию.

Вопрос №10. Сколько широковещательных доменов присутствует в сети?

какой механизм проверки на наличие ошибок используется в ethernet

В пользовательском и привилегированном.

Вопрос №12. Перечисли все режимы работы командной строки IOS.

Пользовательский, привилегированный, глобальной конфигурации.

Источник

Какой механизм проверки на наличие ошибок используется в ethernet

8. МЕТОДЫ ПЕРЕДАЧИ ДАННЫХ КАНАЛЬНОГО УРОВНЯ

8.4. Методы обнаружения ошибок

Канальный уровень должен обнаруживать ошибки передачи данных, связанные с искажением бит в принятом кадре данных или с потерей кадра, и по возможности их корректировать.

Однако наличие процедур восстановления данных требует от конечных узлов дополнительных вычислительных затрат, которые в условиях надежной работы сети являются избыточными.

Напротив, если в сети искажения и потери случаются часто, то желательно уже на канальном уровне использовать протокол с коррекцией ошибок, а не оставлять эту работу протоколам верхних уровней.

Поэтому нельзя считать, что один протокол лучше другого потому, что он восстанавливает ошибочные кадры, а другой протокол — нет. Каждый протокол должен работать в тех условиях, для которых он разработан.

Существует несколько распространенных алгоритмов вычисления контрольной суммы, отличающихся вычислительной сложностью и способностью обнаруживать ошибки в данных.

Контроль по паритету представляет собой наиболее простой метод контроля дан­ных. В то же время это наименее мощный алгоритм контроля, так как с его помощью можно обнаружить только одиночные ошибки в проверяемых данных. Метод заклю­чается в суммировании по модулю 2 всех бит контролируемой информации. Напри­мер, для данных 100101011 результатом контрольного суммирования будет значение 1. Результат суммирования также представляет собой один бит данных, который пересылается вместе с контролируемой информацией. При искажении при пересылке любого одного бита исходных данных (или контрольного разряда) результат сумми­рования будет отличаться от принятого контрольного разряда, что говорит об ошибке. Однако двойная ошибка, например 110101010, будет неверно принята за коррект­ные данные. Поэтому контроль по паритету применяется к небольшим порциям данных, как правило, к каждому байту, что дает коэффициент избыточности для этого метода 1/8. Метод редко применяется в вычислительных сетях из-за его боль­шой избыточности и невысоких диагностических способностей.

Вертикальный и горизонтальный контроль по паритету представляет собой моди­фикацию описанного выше метода. Его отличие состоит в том, что исходные данные рассматриваются в виде матрицы, строки которой составляют байты данных. Конт­рольный разряд подсчитывается отдельно для каждой строки и для каждого столбца матрицы. Этот метод обнаруживает большую часть двойных ошибок, однако облада­ет еще большей избыточностью. На практике сейчас почти не применяется.

Этот метод обладает более высокой вычислительной сложностью, но его диагностические возможности гораздо выше, чем у методов контроля по паритету. Метод CRC обнаруживает все одиночные ошибки, двойные ошибки и ошибки в нечетном числе бит. Метод обладает также невысокой степенью избыточности. Например, для кадра Ethernet размером в 1024 байт контрольная информация длиной в 4 байт составляет только 0,4 %.

Источник

Какой механизм проверки на наличие ошибок используется в ethernet

Канальный уровень должен обнаруживать ошибки передачи данных, связанные с искажением бит в принятом кадре данных или с потерей кадра, и по возможности их корректировать.

Очевидно, что протоколы должны работать наиболее эффективно в типичных условиях работы сети. Поэтому для сетей, в которых искажения и потери кадров являются очень редкими событиями, разрабатываются протоколы типа Ethernet, в которых не предусматриваются процедуры устранения ошибок. Действительно, наличие процедур восстановления данных потребовало бы от конечных узлов дополнительных вычислительных затрат, которые в условиях надежной работы сети являлись бы избыточными.

Напротив, если в сети искажения и потери случаются часто, то желательно уже на канальном уровне использовать протокол с коррекцией ошибок, а не оставлять эту работу протоколам верхних уровней. Протоколы верхних уровней, например транспортного или прикладного, работая с большими тайм-аутами, восстановят потерянные данные с большой задержкой. В глобальных сетях первых поколений, например сетях Х.25, которые работали через ненадежные каналы связи, протоколы канального уровня всегда выполняли процедуры восстановления потерянных и искаженных кадров.

Существует несколько распространенных алгоритмов вычисления контрольной суммы, отличающихся вычислительной сложностью и способностью обнаруживать ошибки в данных.

Контроль по паритету представляет собой наиболее простой метод контроля данных. В то же время это наименее мощный алгоритм контроля, так как с его помощью можно обнаружить только одиночные ошибки в проверяемых данных. Метод заключается в суммировании по модулю 2 всех бит контролируемой информации. Например, для данных 100101011 результатом контрольного суммирования будет значение 1. Результат суммирования также представляет собой один бит данных, который пересылается вместе с контролируемой информацией. При искажении при пересылке любого одного бита исходных данных (или контрольного разряда) результат суммирования будет отличаться от принятого контрольного разряда, что говорит об ошибке. Однако двойная ошибка, например 110101010, будет неверно принята за корректные данные. Поэтому контроль по паритету применяется к небольшим порциям данных, как правило, к каждому байту, что дает коэффициент избыточности для этого метода 1/8. Метод редко применяется в вычислительных сетях из-за его большой избыточности и невысоких диагностических способностей.

Вертикальный и горизонтальный контроль по паритету представляет собой модификацию описанного выше метода. Его отличие состоит в том, что исходные данные рассматриваются в виде матрицы, строки которой составляют байты данных. Контрольный разряд подсчитывается отдельно для каждой строки и для каждого столбца матрицы. Этот метод обнаруживает большую часть двойных ошибок, однако обладает еще большей избыточностью. На практике сейчас также почти не применяется.

Циклический избыточный контроль (Cyclic Redundancy Check, CRC) является в настоящее время наиболее популярным методом контроля в вычислительных сетях (и не только в сетях, например, этот метод широко применяется при записи данных на диски и дискеты). Метод основан на рассмотрении исходных данных в виде одного многоразрядного двоичного числа. Например, кадр стандарта Ethernet, состоящий из 1024 байт, будет рассматриваться как одно число, состоящее из 8192 бит. В качестве контрольной информации рассматривается остаток от деления этого числа на известный делитель R. Обычно в качестве делителя выбирается семнадцати- или тридцати трехразрядное число, чтобы остаток от деления имел длину 16 разрядов (2 байт) или 32 разряда (4 байт). При получении кадра данных снова вычисляется остаток от деления на тот же делитель R, но при этом к данным кадра добавляется и содержащаяся в нем контрольная сумма. Если остаток от деления на R равен нулю 1 ( 1 Существуетнесколько модифицированная процедура вычисления остатка, приводящая к получению в случае отсутствия ошибок известного ненулевого остатка, что является более надежным показателем корректности.), то делается вывод об отсутствии ошибок в полученном кадре, в противном случае кадр считается искаженным.

Этот метод обладает более высокой вычислительной сложностью, но его диагностические возможности гораздо выше, чем у методов контроля по паритету. Метод CRC обнаруживает все одиночные ошибки, двойные ошибки и ошибки в нечетном числе бит. Метод обладает также невысокой степенью избыточности. Например, для кадра Ethernet размером в 1024 байт контрольная информация длиной в 4 байт составляет только 0,4 %.

Существуют два подхода к организации процесса обмена квитанциями: с простоями и с организацией «окна».

какой механизм проверки на наличие ошибок используется в ethernet

Рис. 2.24. Методы восстановления искаженных и потерянных кадров

Второй метод называется методом «скользящего окна» (sliding window). В этом методе для повышения коэффициента использования линии источнику разрешается передать некоторое количество кадров в непрерывном режиме, то есть в максимально возможном для источника темпе, без получения на эти кадры положительных ответных квитанций. (Далее, где это не искажает существо рассматриваемого вопроса, положительные квитанции для краткости будут называться просто «квитанциями».) Количество кадров, которые разрешается передавать таким образом, называется размером окна. Рисунок 2.24, б иллюстрирует данный метод для окна размером в W кадров.

В начальный момент, когда еще не послано ни одного кадра, окно определяет диапазон кадров с номерами от 1 до W включительно. Источник начинает передавать кадры и получать в ответ квитанции. Для простоты предположим, что квитанции поступают в той же последовательности, что и кадры, которым они соответствуют. В момент t1 при получении первой квитанции К1 окно сдвигается на одну позицию, определяя новый диапазон от 2 до (W+1).

Процессы отправки кадров и получения квитанций идут достаточно независимо друг от друга. Рассмотрим произвольный момент времени tn, когда источник получил квитанцию на кадр с номером n. Окно сдвинулось вправо и определило диапазон разрешенных к передаче кадров от (n+1) до (W+n). Все множество кадров, выходящих из источника, можно разделить на перечисленные ниже группы (рис. 2.24, б).

Итак, при отправке кадра с номером n источнику разрешается передать еще W-1 кадров до получения квитанции на кадр n, так что в сеть последним уйдет кадр с номером (W+n-1). Если же за это время квитанция на кадр n так и не пришла, то процесс передачи приостанавливается, и по истечении некоторого тайм-аута кадр n (или квитанция на него) считается утерянным, и он передается снова.

Если же поток квитанций поступает более-менее регулярно, в пределах допуска в W кадров, то скорость обмена достигает максимально возможной величины для данного канала и принятого протокола.

Метод скользящего окна более сложен в реализации, чем метод с простоями, так как передатчик должен хранить в буфере все кадры, на которые пока не получены положительные квитанции. Кроме того, требуется отслеживать несколько параметров алгоритма: размер окна W, номер кадра, на который получена квитанция, номер кадра, который еще можно передать до получения новой квитанции.

Приемник может не посылать квитанции на каждый принятый корректный кадр. Если несколько кадров пришли почти одновременно, то приемник может послать квитанцию только на последний кадр. При этом подразумевается, что все предыдущие кадры также дошли благополучно.

Метод скользящего окна реализован во многих протоколах: LLC2, LAP-B, X.25, TCP, Novell NCP Burst Mode.

Метод с простоями является частным случаем метода скользящего окна, когда размер окна равен единице.

Выбор тайм-аута зависит не от надежности сети, а от задержек передачи кадров сетью.

Во многих реализациях метода скользящего окна величина окна и тайм-аут выбираются адаптивно, в зависимости от текущего состояния сети.

Источник

Секреты тестирования Ethernet каналов

Добрый день, дорогие друзья. Несколько лет работала сисадмином в некотором количестве корпоративных и домашних провайдеров Санкт-Петербурга и по сей день часто сталкиваюсь с тем, что покупая оборудование операторы смотрят больше на цену и описание функций, чем на реальные показатели, о них поставщики обычно ничего не пишут, в следствии чего вместо одного коммутатора приходится устанавливать еще и еще, а качество связи лучше может и не станет. Про существования понятия SLA(Service Level Agreement) тоже не все операторы в курсе, по этой причине собрала достоверную информацию по тестированию сетей и оборудования, и готова предоставить её вашему вниманию.

какой механизм проверки на наличие ошибок используется в ethernet

Ethernet нужно тестировать!

Есть ли точное определение и рецепты того, как проводить тесты пропускной способности канала и качества предоставляемой связи? Я нашла несколько статей, из которых стало понятно только одно, сегодня в России сети тестируют методами, предназначенными для других целей, и это не может не удивлять, ведь услуги связи в крупных городах нашей страны достаточно развиты, скоростной канал есть буквально в каждой квартире, а некоторые операторы уже предоставляют гигабитные каналы домашним клиентам, но о методиках тестирования качества предоставляемых телематических услуг знают далеко не все.

Что конкретно и почему нужно тестировать?

Это крохотная горстка примеров того, чем рискуют на сегодняшний день клиенты и операторы связи.

Софтовые утилиты для тестирование «Интернета»

Полноценным тестированием канала не могут являться echo запросы, ping и mtr никогда не расскажут какая у канала пропускная способность. Об этом не сможет рассказать iperf и прочие софтовые утилиты, так как при одновременном использовании сети и тестировании софтовым утилитам не известен объем пользовательских данных, находящихся в канале в текущий момент, так же при софтовом тестировании возможен ряд неточностей, обусловленных наличием заголовков пакетов, в зависимости от размера кадра заголовки остаются стандартной длины, а тело с данными увеличивается или уменьшается, софтовые утилиты определяют пропускную способность канала без учета размера заголовков, что на разных размерах пакетов вносит в подобное тестирование определенную неразбериху.

Вы не сможете оценить качество арендованного vlan, глядя на график загрузки канала или скачивая объемные файлы из интернета. Почему speedtest.net не является доказательством скорости предоставляемого канала наверное не стоит уточнять? Ведь сразу понятно что — неизвестно какие каналы и через какие сети они идут до серверов speedtest, как и неизвестно насколько загружен канал во время теста, и многие другие параметры теста, а если в тесте столько неизвестных — то его результаты никак не могут быть точными. Результатом speedtest — является скорее некая дельта от неких показателей, а не реальные цифры.

Качество предоставляемых услуг связи — это совокупность многих параметров, и используя правильные инструменты можно быстро и эффективно получить точные данные о предоставляемой услуге. Важно не только получить точные данные, но и иметь уверенность в том, что данные можно будет использовать для доказательства своей правоты, например в суде.

Методики и анализаторы Ethernet

На сегодняшний день есть две основные методики тестирования пропускной способности: старая — RFC-2544 и немного помладше: Y.1564. Методика ITU-T Y.1564 — более актуальная на сегодняшний день, имеет описания для тестирования современных, высокоскоростных каналов связи с современными понятиями о SLA(Service Layer Agreement).

Так как качество ethernet-канала это совокупность многих факторов, следовательно, правильное тестирование должно максимально охватывать все эти совокупности. При тестировании необходимо учесть многие аспекты и было бы полезно иметь расширенные возможности, такие как BER Test, пакетный джиттер, поддержку MPLS, QoS, тестирование нагрузкой протоколов прикладного уровня (http, ftp, etc. ).

Для тестирования каналов от 1G до 10G и выше достаточно сложно делать нагрузочные тесты при помощи неспециализированного железа, зачастую процессоры не способны генерировать достаточный объем трафика, в отличие от специализированных тестеров-анализаторов. Такие приборы можно положить в стойку, шкаф, даже в ящик на чердаке и запускать тесты удаленно, а можно делать автоматические замеры в разные временные интервалы. Любые портативные приборы-анализаторы не испортятся в суровых условиях канализации, так как проходят жестокие испытания на прочность.

Сдача-приемка каналов связи.

Для сдачи или приемки построенных линий и магистралей, для работы по высоким стандартам лучше всего иметь в штатном арсенале тестер-анализатор, хотя в интернете можно найти фирмы, специализирующиеся на выездном тестировании. Почему-то считается что покупать тестер-анализатор это очень дорого.

Подробнее о методике тестирования RFC-2544 и том, как это работает.

Методика RFC-2544 рекомендует проводить измерения разных размеров кадра: для Ethernet трафика кадры размером 64, 128, 256, 512, 1024, 1280, 1518 октетов, для каждого размера кадра необходим отдельный запуск серийного тестирования. При необходимости можно провести тестирование и для Jumbo frame(кадры размером 4096 или 9000 октетов). Разный размер кадров необходим для имитации разных типов трафика.

Изначально методика была разработана непосредственно для тестирования сетевых устройств, например при разработке коммутаторов, но набор функций адаптировали для измерения качества каналов. Методика была одобрена в 1999 году ISOC.

какой механизм проверки на наличие ошибок используется в ethernet

Методика предлагает набор из 6 тестов, я опишу более подробно, каким образом проходит тестирование, для наглядности восприятия:

Определение пропускной способности тестируемого устройства(Throughput)

Описание теста: посылается небольшой объем, специально сформированных тестером, пакетов, на определенной скорости, на входной порт устройства, на выходном порту количество подсчитывается, если передано больше, чем получено — скорость уменьшается и тест запускается снова.

Определение время задержки кадра(Latency)

Описание теста: после определения пропускной способности(Throughput), для каждого размера кадра, на соответствующей ему максимальной скорости, посылается поток пакетов по определенному адресу. Поток должен иметь минимальную длительность в 120 секунд. В 1 пакет по прошествии 60 секунд вставляется метка. Формат метки определяется производителем оборудования. На передающей стороне записывается время, к которому пакет с меткой был полностью отправлен. На приемной стороне определяется метка и записывается время полного приема пакета с меткой. Задержка (latency) — это разница между временем отправки и временем получения. Данный тест, согласно методике необходимо повторять минимум 20 раз. По результатам 20 измерений вычисляется средняя задержка. Тест следует проводить отправляя весь тестовый поток на один адрес и отправляя каждый кадр по новому адресу.

Определение частоты потери кадров(Frame loss rate)

Описание теста: на входной порт устройства посылается определенное количество кадров на определенной скорости и подсчитывается количество пакетов, принимаемых от выходного порта устройства. Частота потери кадров рассчитывается следующим образом:

((количество переданных кадров — количество полученных кадров) * 100) / количество переданных кадров

Первая отправка происходит на максимально-возможной скорости, затем скорость отправки понижается с максимальным шагом в 10%, согласно методике уменьшение % шага даст наиболее точные результаты. Уменьшение скорости необходимо продолжать до тех пор, пока две последних отправки будут без ошибок, а именно мы узнаем максимальную скорость передачи данных, на которой frame loss rate становится равен 0.

Тестирование способности обрабатывать back-to-back кадры(Back-to-back frames)

Описание теста: тест сводится к отсылке некого количества кадров с минимальной межкадровой задержкой на входной порт тестируемого устройства и подсчету кадров с выходного порта устройства. Если количество отправленных кадров и полученных равно, то увеличивается объем отправляемых кадров и тест повторяется, если принятых пакетов меньше, чем отправленных объем отправляемых кадров уменьшается и тест повторяется. В итоге мы должны получить максимальное количество пакетов отправленных и полученных без потерь для каждого размера пакета, это и будет значение back-to-back теста. Согласно методике длительность посылок кадров на порт устройства не должна быть менее двух секунд, а минимальное количество — не менее 50 раз. Конечная цифра — это усредненный результат 50 тестов.

Восстановление после перегрузки(System recovery), применимо только для тестирование устройств

Описание теста: на вход устройства в течение минимум 60 секунд отсылается поток кадров со скоростью 110% относительно измеренной тестом throughput. Если тест throughput показал идеальные результаты, то выбирается максимальная скорость данного соединения. В момент перегрузки скорость потока уменьшается в два раза и засекается разница между временем снижения скорости потока, и временем когда был потерян последний кадр.

Время восстановления тестируемого устройства после перезапуска(Reset), применимо только для тестирование устройств

Описание теста: на вход устройства отсылается непрерывный поток кадров на скорости, определенной в результате теста throughput с минимальным размером кадра. Устройство сбрасывается. Время восстановления после сброса это разница между временем приема последнего пакета до сброса и временем приема первого пакета после сброса. Тестируется и аппаратный и программный типы сброса устройства.

Что изменилось со свежей методикой Y.1564?

Новые рекомендации были рассмотрены и одобрены в 2011 году ITU. К уже изложенным рекомендациям в RFC 2544 добавляется пакетный джиттер(дрожание), а именно возможность вычисления разницы времени при получении ряда последовательных пакетов данных, относящихся к одному и тому же потоку, в идеальном мире ее не должно существовать, но в проблемных сетях последовательность может быть нарушена, что может сказаться на скорости обработки данных. RFC2544 позволяет делать проверки исключительно на максимальной скорости канала, на которой не будет потери пакетов, а это обычно выше чем скорость CIR (Committed Information Rate — гарантированная полоса пропускания). Y.1564 создан именно для SLA, оценки скорости и качества предоставляемого канала согласно ключевым показателям производительности(KPI) и позволяет проверить предоставляемый канал в соответствие с договором.

какой механизм проверки на наличие ошибок используется в ethernet
Y.1564 позволяет проверить гарантированную полосу пропускания, максимально-допустимую, а так же дать нагрузку сверх полосы, к примеру для проверки настроек шейпера.

Есть еще несколько различий между методиками, RFC2544 не производит верификации корректности настройки сервиса (соответствие KPI заданным, и ограничение скорости выше EIR(Excess Information Rate — максимальная негарантированная полоса пропускания), во избежание перегрузки сети). В оригинальной версии RFC2544 джиттер не измеряется. Согласно RFC2544 каждый тест запускается отдельным потоком, что не позволяет измерить качество предоставляемых услуг в совокупности и увеличивает время тестирования, еще один минус RFC2544 в том, что отсутствует возможность профилирования для проверки разных типов трафика в одном канале, к примеру, если в сети используется QoS, в Y.1564 учтены недочеты и немного расширен функционал.

Тестировать можно только новые каналы или уже рабочие тоже?

Тестировать нужно и новые каналы, и тем более старые. Вы можете заранее узнать о назревающих проблемах, не доводя клиентов до звонка в поддержку. Современными тестерами-анализаторами можно проводить проверки в работающей сети, проверять каналы как со скоростью 10/100/1000Mbit, так и 10/40/100G. Есть одно НО, очень важно понимать что и как вы делаете, важно нечаянно не положить тестируемый канал.

Режимы тестирования — In/Out of service.

На сегодняшний день тестирование сетей стремится к полной систематизации и постоянному контролю каналов, более ранние версии методики RFC2544 были созданы для тестирования каналов/оборудования в режиме OutOfService, и использовались в основном для теста оборудования, но на сегодняшний день все производители тестовых приборов переходят на более новые стандарты тестирования, позволяющие проводить постоянный мониторинг сети в режиме InService. Такое тестирование позволяет проверять скорость полосы пропускания без отключения клиентов, что важно для операторов услуг связи.

Товарищи, как говорит один мой друг, давайте вместе бороться с «коекакерами», и начнем тестировать то, что строим и то, что эксплуатируем.

* Мнение компании может не совпадать с мнением автора 😉

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *