какой минерал клинкера медленно твердеет но набирает высокую прочность при длительном твердении

Свойства клинкерных минералов и влияние на свойства вяжущего

какой минерал клинкера медленно твердеет но набирает высокую прочность при длительном твердении какой минерал клинкера медленно твердеет но набирает высокую прочность при длительном твердении какой минерал клинкера медленно твердеет но набирает высокую прочность при длительном твердении какой минерал клинкера медленно твердеет но набирает высокую прочность при длительном твердении

какой минерал клинкера медленно твердеет но набирает высокую прочность при длительном твердении

какой минерал клинкера медленно твердеет но набирает высокую прочность при длительном твердении

Клинкер. Качество клинкера зависит от его химического и минералогических составов. Для производства портландцементного клинкера применяют известняк и глину. Известняк в основном состоит из двух оксидов: СаО и СO2, а глина — из различных минералов, содержащих в основном три оксида: SiO2, Аl2О3 и Fe2O3. В процессе обжига сырьевой смеси удаляется СO2, а оставшиеся четыре оксида: СаО, SiO2, Аl2О3 и Fe2O3 — образуют клинкерные минералы. Содержание оксидов в цементе примерно следующее: 64. 67% СаО, 21. 24% SiO2, 4. 8% Аl2O3, 2. 4% Fe2O3.

Кроме указанных основных оксидов в портландцементном клинкере могут присутствовать MgO и щелочные оксиды К2О и Na2O, снижающие качество цемента. Оксид магния, обожженный при температуре около 1500°С, при взаимодействии с водой очень медленно гасится и вызывает появление трещин в уже затвердевшем растворе или бетоне, поэтому содержание оксида магния в портландцементе не должно быть более 5%. Наличие в цементе щелочных оксидов выше 1 % может вызвать разрушение отвердевшего бетона на таком цементе.

Указанные выше основные оксиды находятся в клинкере не в свободном виде, а образуют при обжиге четыре основных минерала, относительное содержание которых в портландцементе следующее (%): трехкальциевый силикат 3CaO•SiO2 (алит) — 45. 60; двухкальциевый силикат 2CaO•SiO2 (белит)— 20. 35; трехкальциевый алюминат 3СaO•Аl2O3 — 4. 12; четырехкальциевый алюмоферрит 4CaO•Al2O3•Fe2O3—10. 18. Сокращенное обозначение этих минералов следующее: C3S, C2S, С3А и C4AF.

• Алит (C3S) — основной минерал клинкера, быстро твердеет и практически определяет скорость твердения и нарастания прочности портландцемента. Он представляет собой твердый раствор трехкальциевого силиката и небольшого количества (2. 4%) MgO, Аl2O3, Р2О5, Cr2О3 и других примесей, которые могут существенно влиять на структуру и свойства портландцемента.

• Белит (β-C2S) — второй по важности и содержанию силикатный минерал клинкера, медленно твердеет и достигает высокой прочности при длительном твердении. Белит в клинкере представляет собой твердый раствор двухкальциевого силиката (β-C2S) и небольшого количества (1. 3%) Аl2O3, Fe2O3, MgO, Сr2O3 и др. В связи с тем что белит при медленном охлаждении клинкера теряет вяжущие свойства, переходя из β-C2S в γ-C2S, это явление предотвращается быстрым охлаждением клинкера.

Содержание минералов-силикатов в клинкере в сумме составляет около 75%, поэтому гидратация алита и белита в основном определяет свойства портландцемента. Оставшиеся 25% объема клинкера между кристаллами алита и белита заполнены кристаллами С3А, C4AF, стекла и второстепенными минералами.

• Трехкальциевый алюминат (С3А) при благоприятных условиях обжига образуется в виде кубических кристаллов. Он очень быстро гидратирует и твердеет. Продукты гидратации имеют пористую структуру и низкую прочность. Кроме того, С3А является причиной сульфатной коррозии цемента, поэтому его содержание в сульфатостойком цементе ограничено 5%.

• Четырехкальциевый алюмоферрит (C4AF) — алюмоферритная фаза промежуточного вещества клинкера, представляет собой твердый раствор алюмоферритов кальция разного состава, обычно ее состав близок к 4СаО•Аl2О3•Fe2О3. По скорости гидратации этот минерал занимает как бы промежуточное положение между алитом и белитом и не оказывает определяющего значения на скорость твердения и тепловыделение портландцемента.

Клинкерное стекло присутствует в промежуточном веществе в количестве 5. 15%, которое в основном состоит из СаО, Аl2О3, MgO, К2О и Na2O.

При правильно рассчитанной и тщательно подготовленной и обожженной сырьевой смеси клинкер не должен содержать свободного оксида кальция СаО, так как пережженная при температуре около 1500°С известь, так же как и магнезия MgO, очень медленно гасится, увеличиваясь в объеме, что может привести к растрескиванию уже затвердевшего бетона.

Источник

Состав портландцементного клинкера.

Минералогический состав портландцементного клинкера.

Портландцементный клинкер. Клинкерные минералы не являются чистыми соединениями, а представляют собой смеси, содержащие в незначительном количестве компоненты других минералов в виде смешанных кристаллических соединений; это относится и к остальным химическим примесям клинкера, которые не могут образовать самостоятельных фаз. Поэтому, чтобы четко отличать чистые соединения от клинкерных минералов, Териебом в 1897 г. дал основным минералам клинкера C3S и C2S названия «алит» и «белит» и, еще не зная их состава, исследовал под микроскопом отличия между ними.

Алит. Белит.

Белит.

При дальнейшем медленном охлаждении из β-C2S может образоваться стабильная ɣ-форма. Этот процесс протекает с увеличением объема на 10% и при определенных условиях может привести к рассыпанию клинкера. Быстрое охлаждение клинкера и наличие примесей препятствует переходу белита в гидравлически инертную ɣ-фазу, снижающую его качество.

Белит твердеет значительно медленнее алита, но в конце кондов достигает такой же прочности, как алит.

Если в клинкере глинозема содержится меньше, чем оксида железа (в молях), то оба компонента, вступая в соединение с известью, образуют алюмоферрит кальция (см, табл. 1.5.2.) —смешанно-кристаллическую фазу с конечным членом 2CaO•Fe2O3, где Fe может непрерывно замещаться Al. Этот смешанно-кристаллический ряд сохраняет стабильность до молярного отношения Al2O3:Fe2O3=2:1; однако в портланд-цементном клинкере, содержащем только соединения, богатые известью, ряд завершается уже при отношении 1:1. Если в клинкере преобладает глинозем, то его избыток сверх указанного отношения (как это имеет место в формуле 4CaO•Al2O3•Fe2O3) образует трехкальцисвый алюминат, богатый известью.

Трехкальциевый алюминат очень легко вступает в реакцию с водой, однако не имеет ясно выраженных гидравлических свойств и совместно с силикатами повышает начальную прочность цемента. Алюмоферрит кальция мало способствует гидравлическому твердению цемента.

Как уже указывалось щелочи только тогда попадают в клинкерные фазы, когда количество SO3, содержащееся в клинкере, недостаточно для полного образования щелочных сульфатов. Щелочи входят в состав всех клинкерных фаз, однако преимущественно содержатся в алюмииатной фазе в виде смешанных кристаллов, причем состав, указанный в формуле табл. 1.5.2, может быть получен только в присутствии SiO2.

Источник

Минеральный состав клинкера

Минеральный состав клинкера — представлен 22 минералами, из которых только четыре по количеству и по своим свойствам являются главными и ответственными за прочность цементного камня при его твердении: алит, белит, трехкальциевый алюминат и алюмоферрит кальция.

Алит 3СаО·SiО2 (или С3S) – самый важный минерал клинкера, определяющий быстроту твердения, прочность и другие свойства портландцемента; содержится в клинкере в количестве 45…65%.

Белит 2СаО·SiО2 (или С2S) – второй по важности и содержанию (20…30%) силикатный минерал клинкера. Он медленно твердеет, но достигает высокой прочности при длительном твердении портландцемента.

Трехкальциевый алюминат 3СаО Al2O3 (или C3A) – в клинкере содержится в количестве 4…12% – самый активный минерал, быстро взаимодействует с водой. В сульфатостойком портландцементе содержание С3А ограничено 5%, так как он является основной причиной сульфатной коррозии бетона.

Четырехкальциевый алюмоферрит 4CaO Al2O3 Fe2O3 (или C4AF) – в клинкере содержится в количестве 10…20%. Характеризуется умеренным тепловыделением и по быстроте твердения занимает промежуточное положение между С2S и С3S.

Содержание щелочей Na2O и К2О в портландцементе ограничивают 0,6% из-за опасности растрескивания бетона в конструкции.

[Пеккер В.И. Современные материалы и технология строительства зданий и сооружений: Цикл лекций для специалистов по общестроительным и отделочным работам – Челябинск: ЧИПС – ФПК Госстроя России, 2005. 56 с.]

Правообладателям! В случае если свободный доступ к данному термину является нарушением авторских прав, составители готовы, по требованию правообладателя, убрать ссылку, либо сам термин (определение) с сайта. Для связи с администрацией воспользуйтесь формой обратной связи.

ISSN: 2587-9413 Энциклопедия терминов, определений и пояснений строительных материалов.

Источник

Минеральный состав клинкера

Основные минералы клинкера: алит, белит, трехкальциевый алюминат и целит (см. табл. 9.1).

НаименованиеФормулаСокращенное обозначениеПримерное содержание в клинкере,%
Алит (трехкальциевый силикат)3CaO×SiO2C3S45-60
Белит (двухкальциевый силикат)2CaO×SiO2C2S20-30
Трехкальциевый алюминат3CaO×Al2O3C3A4-12
Целит (четырехкальциевый алюмоферрит)4CaO×Al2О3×Fe2O3C4AF10-20

Содержание минералов-силикатов в клинкере портландцемента в сумме составляет около 75%, поэтому гидратация алита и белита в основном определяет технические свойства портландцемента. Остальные 25% составляет промежуточное вещество, заполняющее объем между кристаллами алита и белита. Промежуточное вещество состоит из кристаллов трехкальциевого алюмината С3А, алюмоферрита кальция C4AF, стекла и второстепенных минералов 12СаО×7Аl2O3 и др.

Трехкальциевый алюминат содержится в клинкере в количестве 4…12% и при благоприятных условиях обжига получается в виде кубических кристаллов размером до 10-15 мкм; образует твердые растворы сложного состава. Он очень быстро гидратируется и твердеет, но имеет небольшую прочность и наибольшую интенсивность тепловыделения. Является причиной сульфатной коррозии бетона, поэтому в сульфатостойком портландцементе содержание С3А ограничено 5%.

Четырехкальциевый алюмоферрит в клинкере содержится в количестве 10. 20%. Алюмоферритная фаза промежуточного вещества клинкера представляет собой твердый раствор алюмоферритов кальция разного состава, в клинкерах обычных портландцементов ее состав близок к 4CaO×Al2O3×Fe2O3. По скорости гидратации минерал занимает промежуточное положение между алитом и белитом.

Производство портландцемента включает в себя следующие основные этапы:

а) добычу в карьере и доставку на завод сырьевых материалов;

б) приготовление сырьевой смеси;

в) обжиг сырьевой смеси до спекания – получение клинкера;

г) помол клинкера с добавкой гипса – получение портландцемента.

Сырьевыми материалами для производства клинкера служат известняки с высоким содержанием СаСО3 (мел, известь, мергели и др.) и глинистые породы (глина, глинистые сланцы), содержащие SiO2, Al2O3, Fe2O3. Примерное соотношение между карбонатной и глинистой составляющими сырьевой смеси 3 : 1 (75% известняка и 25% глины). В сырьевую смесь вводят добавки, корректирующие химический состав, регулируя температуру спекания смеси и кристаллизацию минералов клинкера.

Приготовление сырьевой смеси состоит в тонком измельчении и смешении необходимого количества компонентов. Смесь приготовляют сухим, мокрым и комбинированными способами.

Обжиг сырьевой смеси как при сухом, так и при мокром способе осуществляется в основном во вращающихся печах (рис. 9.1), которые представляют собой длинный, расположенный слегка наклонно цилиндр (барабан), сваренный из листовой стали с огнеупорной футеровкой внутри. Длина печей от 95 до 230 м, диаметр 5-7 м.

какой минерал клинкера медленно твердеет но набирает высокую прочность при длительном твердении

Сырье, подготовленное в виде порошка (сухой способ) или шлама (мокрый способ) подается автоматическим питателем в печь со стороны ее верхнего (холодного) конца, а со стороны нижнего (горячего) конца вдувается топливо (природный газ, мазут, воздушно-угольная смесь), сгорающее в виде 20…30 метрового факела. Сырье занимает только часть поперечного сечения печи и при ее вращении (скорость 1…2 об/мин) медленно движется к нижнему концу навстречу горячим газам, проходя 6 температурных зон: испарения (зона сушки), подогрева, декарбонизации, экзотермических реакций, спекания, охлаждения.

Зона испарения (зона сушки), в ней происходит высушивание сырьевой смеси при постепенном повышении температуры с 70 до 200 °С. Подсушенный материал комкуется, при перекатывании комья распадаются на более мелкие гранулы.

Зона подогрева – здесь при постепенном нагревании сырья с 200 до 700 °С сгорают находящиеся в нем органические примеси, из глины удаляется кристаллохимическая вода (при 500 °С) и образуется безводный каолинит Al2O3×2SiO2.

Подготовительные зоны (испарения и подогрева) при мокром способе занимают 50 – 60 % длины печи, при сухом же способе подготовка сырья сокращается за счет зоны испарения.

Зона декарбонизации (20% длины печи) – здесь температура материала поднимается с 700 до 1100 °С, завершается процесс разложения карбонатов кальция и магния с выделением большого количества СаО, что сопровождается большим поглощением теплоты. В этой же зоне происходит распад глинистых минералов на оксиды Al2O3, SiO2 и Fe2O3, которые вступают в химическое взаимодействие с СаО и в результате образуются минералы 3СаО×Al2O3 и частично 2СаО×SiO2.

Зона экзотермических реакций (5-7 % длины печи, температура 1100 –1250°С) – в этой зоне проходят реакции образования 3СаО×Al2O3, целита и белита; эти экзотермические реакции сопровождаются выделением большого количества теплоты и интенсивным повышением температуры материала.

Зона спекания – (10-15 % длины печи), здесь при температуре с 1300°С до 1450°С образуется расплав из легкоплавких минералов, в которых растворяются белит и СаО, из которых в расплаве происходит образование алита 3СаО×SiO2, идущее почти до полного связывания СаО. При вращении печи частично расплавленный материал непрерывно перекатывается, мелкие частицы слипаются в гранулы. Понижение температуры с 1450 до 1300°С вызывает кристаллизацию 3СаО×Al2O3, целита и MgO, которая заканчивается в зоне охлаждения.

Зона охлаждения – температура клинкера понижается с 1300 до 1000°С; здесь полностью формируется его структура и состав, включающий алит, белит, C3A, C4AF, MgO (периклаз), стекловидную фазу и второстепенные составляющие.

Цементный клинкер выходит из вращающейся печи в виде мелких зерен – гранул. На выходе из печи клинкер интенсивно охлаждается воздухом с 1000°С до 100…200 °С в колосниковых и других холодильниках. После этого клинкер выдерживается на складе 1-2 недели.

Помол клинкера производится при помощи трубной мельницы, представляющей собой барабан, облицованный внутри стальными броневыми плитами и разделенный дырчатыми перегородками на 2-4 камеры. Материал измельчается под действием загруженных в барабан стальных шаров или цилиндров.

При помоле к клинкеру добавляется гипс (так чтобы общее содержание SO3 в цементе не превышало 3,5%), который регулирует сроки схватывания портландцемента.

Готовый портландцемент – очень мелкий порошок темно-серого или зеленовато-серого цвета; на выходе из мельницы он имеет высокую температуру (80-120 °С) и направляется пневмотранспортом на хранение в силосы, где он выдерживается до окончательного охлаждения и гашения влагой воздуха остатков свободного СаО. Из силосов портландцемент поступает в специальный транспорт, а также на расфасовку в мешки.

При смешивании цемента с водой образуется цементное тесто, которое легко формируется и обладает пластичностью в течение 1-3 часов после его приготовления. Затем наступает период схватывания цементного теста, который заканчивается через 5-10 часов. При этом цементное тесто загустевает, теряет подвижность и в конце схватывания превращается в камень, но его прочность еще мала. Переход цементного теста в твердое состояние означает конец схватывания и начало собственно твердения, сопровождающееся нарастанием прочности.

Твердение при благоприятных условиях длится годами – вплоть до полной гидратации цемента.

Процессы твердения портландцемента протекают сначала быстро, а потом замедляются. На 3-4 сутки цемент имеет 30 – 50 % марочной прочности; на 7-е сутки – 60 – 70 %, на 15-е – 85 % и на 28-е – 100%. В дальнейшем прочность продолжает нарастать и при благоприятных условиях за 2-3 года достигает 200 – 300 % марочной прочности. Тепловлажностная обработка (пропаривание) ускоряет процессы твердения портландцемента.

Регулирование содержания в клинкере основных минералов позволяет создавать цемент со специфическими свойствами. Например, для создания быстротвердеющих цементов необходимо увеличить содержание в них С3S и С3А, а для создания цементов с малым тепловыделением (используется для массивных гидротехнических сооружений) содержание С3S и С3А уменьшается.

Структура цементного камня

После затвердевания цементное тесто превращается в цементный камень, который включает в себя:

1. Продукты гидратации цемента: а) гель гидросиликата кальция и др. новообразования, обладающие свойствами коллоидов; б) кристаллы Са(ОН)2 и эттрингита;

2. Непрореагировавшие зерна клинкера, содержание которых уменьшается по мере гидратации цемента;

3. Поры: поры геля (размером менее 0,1 мкм); капиллярные поры (от 0,1 до 10 мкм), расположенные между агрегатами частиц геля; воздушные поры (от 50 мкм до 2 мм).

Пористость цементного камня составляет примерно 30 – 50 %.

Технические характеристики портландцемента

2). Тонкость помола оценивается путем просеивания предварительно высушенной пробы цемента через сито №008; должна быть такой, чтобы через сито проходило более 85% массы пробы (удельная поверхность цемента при этом составляет 2500-3000 см 2 /г).

3). Сроки схватывания определяют, используя прибор Вика, путем погружения иглы этого прибора в цементное тесто нормальной густоты. Начало схватывания обычного цемента при температуре 20°С должно наступать не ранее 45 минут, а конец – не позднее чем через 10 часов от момента затворения вяжущего водой. Для получения нормальных сроков схватывания при помоле клинкера к нему добавляют гипс. Замедлителямисхватывания являются также борная кислота, фосфаты и нитраты калия, натрия и аммония, СДБ и др. Ускорителямисхватывания являются карбонаты и сульфаты металлов, хлорид кальция, добавки в виде измельченного гидратированного цемента и др.

4).Равномерность изменения объема, которая качественно характеризует присутствие в цементе CaO и MgO, определяется на образцах, предварительно твердевших 24 часа и подвергнутых затем кипячению в течение 3 часов. Образцы после испытаний не должны иметь радиальных трещин, разрушений и искривлений.

5). Тепловыделение происходит при гидратации цемента. Зависит от состава клинкера и тонкости помола. Минерал С3А отличается быстрым и высоким тепловыделением; наоборот, белит выделяет тепло очень медленно. Увеличение тонкости помола усиливает тепловыделение в начале твердения в первые 7 суток. В тонких конструкциях теплота гидратации быстро рассеивается и не оказывает существенного влияния. Однако в массивных конструкциях, вследствие более интенсивного охлаждения внешней части бетона по отношению к внутреннему массиву, могут возникнуть опасные температурные напряжения (разность температур может быть более 40 0 С). Чтобы избежать растрескивания, стремятся использовать низкотемпературные цементы, снижают расход цемента в бетоне, а в случае необходимости применяют искусственное охлаждение массива.

Тепловыделение может играть положительную роль при бетонировании в холодное время года по способу термоса, при этом выделяющаяся теплота способствует поддерживанию положительной температуры твердеющего бетона.

6). Прочностьпортландцемента характеризуется его маркой, которую определяют испытанием стандартных образцов-балочек размером 40х40х160 мм, изготовленных из цементно-песчаного раствора состава 1:3 (по массе) пластичной консистенции. Через 28 суток комбинированного твердения (первые сутки в формах во влажном воздухе, затем после расформовки 27 суток в воде при температуре 20±2°С) образцы испытывают на изгиб и сжатие.

Активностью портландцемента называется предел прочности при осевом сжатии половинок образцов-балочек.

В зависимости от активности, с учетом предела прочности при изгибе, портландцемент подразделяется на марки 400, 500, 550, 600 (цифра соответствует округленной в меньшую сторону средней прочности при сжатии образцов-балочек, выраженной в кг/см 2 ). У быстротвердеющих портландцементов нормируется не только 28-суточная, но и начальная 3-суточная прочность.

Условное обозначение цемента обычно состоит из наименования его вида (ПЦ – портландцемент, ШПЦ – шлакопортландцемент), марки, содержания добавок в % (Д0, Д5, Д20) и наличие специальных свойств (Б – быстротвердеющий, ПЛ – пластифицированный, ГФ – гидрофобный). Например, портландцемент марки 500, с добавкой до 20%, быстротвердеющий, пластифицированный имеет обозначение: ПЦ500-Д20-Б-ПЛ.

9.9. Долговечность цементного камня. Основные виды коррозии

Разрушение конструкций, изготовленных с применением цемента (бетонные, железобетонные, строительные растворы) обычно начинаются с разрушения цементного камня, стойкость которого, как правило, ниже стойкости заполнителей.

Разрушение может происходить под влиянием:

1. Физических явлений (насыщения водой, попеременного замораживания и оттаивания, увлажнения и высыхания и т.п.);

2. Химического взаимодействия цементного камня с агрессивными веществами, содержащимися в воде или в воздухе (магнезиальная и другие виды коррозии).

При выборе вида цемента для конкретного сооружения необходимо учитывать требования по морозостойкости, воздухостойкости и химической стойкости.

Морозостойкость цементного камня определяется не общей, а капиллярной его пористостью, поскольку вода, содержащаяся в порах цементного геля, не переходит в лед даже при сильных морозах. Уменьшение объема капиллярных пор резко повышает морозостойкость.

Воздухостойкость – способность цементного камня сохранять прочность в сухих условиях при сильном нагреве солнечными лучами, а также в условиях попеременного увлажнения и высыхания. Требование по воздухостойкости ограничивает применение цементов с активными минеральными добавками осадочного происхождения для надземных конструкций, работающих в сухих условиях.

Основные виды химической коррозии цементного камня

Коррозия может происходить под действием мягкой воды, растворов кислот, некоторых солей и кислых газов на составные части цементного камня, главным образом на Са(ОН)2 и 3СаО×Al2O3×6H2O. Встречающиеся на практике коррозии можно разделить на 3 вида:

Коррозия первого вида заключается в растворении и вымывании (выщелачивании) Са(ОН)2 при действии на цементный камень мягких вод, содержащих мало растворенных веществ (дождевая вода, вода горных рек, а также равнинных рек в половодье, болотная вода и т.п.). Вымывание Са(ОН)2 приводит к разложению гидросиликатов и гидроалюминатов кальция и увеличению пористости. Потеря цементным камнем 15-30% Са(ОН)2 понижает его прочность на 40-50% и более. Выщелачивание можно заметить по появлению белых пятен (подтеков) на поверхности бетона. Наличие градиента давления воды на сооружение ускоряет процесс выщелачивания.

Для ослабления коррозии выщелачивания ограничивают содержание C3S до 50%. Главным средством борьбы с выщелачиванием является введение в цемент активных минеральных добавок и применение плотного бетона. Положительно сказывается выдерживание на воздухе 2-3 месяца бетонных свай, блоков и других элементов с целью образования на их поверхности защитного слоя из малорастворимого СаСО3 (происходит реакция Са(ОН)2 + СО2 ® СаСО3).

Коррозия второго вида может происходить в различных формах:

· Углекислотная коррозия развивается при действии на цементный камень воды, содержащей свободный СО2, разрушающий СаСО3 с образованием легко растворимого бикарбоната кальция Са(НСО3)2 :

· Общекислотная коррозия происходит при взаимодействии растворов, имеющих рH 2 /г). Применение ОБТЦ в высокопрочных бетонах марок М500 – М600 снижает на 15-20% расход цемента, сокращает время и энергозатраты на тепловую обработку железобетонных изделий.

Сверхбыстротвердеющий цемент (СБТЦ) быстро схватывается, отличается от БТЦ значительно более высокой ранней прочностью, превышающей через 6 часов после затворения водой 10 МПа. Применение СБТЦ дает возможность через 1-4 часа получать без тепловой обработки прочность бетона, достаточную для распалубки изделий. Для изготовления СБТЦ требуется вводить в сырьевую смесь галогеносодержащие вещества (например, фторид или хлорид кальция) и повышать содержание алюминатов.

Изготовляют на основе клинкера нормированного минерального состава (ограничивается содержание в клинкере алита, трехкальциевого алюмината и оксида магния) и применяют для изготовления бетонных и железобетонных конструкций, обладающих коррозионной стойкостью при воздействии сред, содержащих опасный уровень сульфатов.

Подразделяют на следующие виды: сульфатостойкий портландцемент марки 400; сульфатостойкий портландцемент с минеральными добавками марок 400 и 500; сульфатостойкий шлакопортландцемент марок 300 и 400; пуццолановый портландцемент марок 300 и 400.

Первый вид может также использоваться для бетонов повышенной морозостойкости. Сульфатостойкие шлакопортландцементы и пуццолановый портландцемент обычно применяют для подземных или подводных частей сооружений, подвергающихся сульфатной коррозии. Благодаря пониженному тепловыделению могут использоваться для бетонирования массивных гидротехнических сооружений.

Портландцементы с минеральными добавками

Активными минеральными добавками (АМД) называются природные или искусственные вещества, которые при смешивании в тонкоизмельченном виде с известью и затворении водой образуют тесто, которое после начального твердения на воздухе может продолжать твердеть и под водой.

АМД (называемые иначе гидравлическими добавками) содержат SiO2 в аморфном, а следовательно, в химически активном состоянии и поэтому способны взаимодействовать с Са(ОН)2, образуя гидросиликаты кальция.

В качестве природных АМД используются осадочные горные породы (диатомит, трепел, опока, глиежи), а также вулканические породы (туф, вулканический пепел, пемза, витрофир, трасс). Искусственные АМД представляют собой побочные продукты и отходы промышленности: быстроохлажденные (гранулированные) доменные шлаки, белитовый (нефелиновый) шлам, зола-унос.

АМД химически связывают растворимый в воде Са(ОН)2, выделяющийся при твердении портландцемента, при этом повышается плотность и водостойкость цементного камня, возрастает его сопротивление коррозии.

Портландцемент с АМД до 20% имеет те же марки, что и бездобавочный портландцемент и близок к нему по своим свойствам.

Пуццолановый портландцемент изготовляют путем совместного помола портландцементного клинкера и АМД с необходимым количеством гипса. Добавок осадочного происхождения должно быть от 20 до 30%, а вулканического – от 25 до 40%. Химическое связывание Са(ОН)2 происходит по реакции:

образуя практически нерастворимый силикат кальция. В результате значительно возрастает стойкость бетона к коррозии 1-го типа.

Пуццолановый портландцемент следует применять для бетонов, постоянно находящихся во влажных условиях (подводные и подземные части сооружений). На воздухе такой бетон дает большую усадку и в сухих условиях частично теряет прочность. Кроме того, бетоны на этом цементе имеют низкую морозостойкость и не годятся для сооружений, подвергающихся замораживанию и оттаиванию.

Пуццолановый портландцемент твердеет медленнее, чем портландцемент, особенно при низких температурах. Он обладает небольшим тепловыделением, и поэтому его часто используют для бетонирования внутренних частей массивных сооружений (плотин, шлюзов и т.п.).

Шлакопортландцемент производится путем совместного тонкого помола клинкера и гранулированного доменного (или электротермофосфорного) шлака с необходимым количеством гипса. Имеет марки 300, 400, 500.

Доменные шлаки по своему химическому составу напоминают цементный клинкер. Количество доменного шлака в шлакопортландцементедолжно быть от 21 до 80% массы цемента (допускается замена до 10% шлака трепелом или другими АМД).

Гранулированный шлак, взаимодействуя с Ca(OH)2, образует низкоосновные гидросиликаты СаО×SiO2×2,5H2O и гидроалюминаты 2СаО×Al2O3×8H2O кальция. Процесс твердения шлакопортландцемента значительно ускоряется при тепловлажностной обработке.

Шлакопортландцемент более стоек в мягких и сульфатных водах, по сравнению с портландцементом. Тепловыделение при твердении в 2 – 2,5 раза меньше, чем у пуццоланового портландцемента, поэтому шлакопортландцемент хорошо подходит для бетонов массивных конструкций. Шлакопортландцемент выгодно отличается от пуццоланового портландцемента умеренной водопотребностью, более высокой воздухо- и морозостойкостью. Применяется для наземных, подземных и подводных частей сооружений.

Однако, шлакопортландцементу присущ тот же недостаток, что и пуццолановому портландцементу – он медленно набирает прочность в первое время твердения, в особенности при низких температурах. Этот недостаток устраняется в быстротвердеющем шлакопортландцементе (имеет марку 400), который за трое суток приобретает прочность более 20 МПа.

Портландцементы с органическими добавками

Такие цементы изготовляют, вводя при помоле клинкера поверхностно-активные добавки, которые можно подразделить на гидрофилизирующие и гидрофобизирующие.

К гидрофилизирующим добавкам (которые улучшают смачивание частиц цемента водой и одновременно ослабляют силы взаимного сцепления между частицами вяжущего) относят сульфитно-дрожжевую бражку (СДБ), состоящую из лигносульфоната кальция (ЛСТ).

К гидрофобизирующим (т.е. водоотталкивающим) добавкам относят мылонафт, асидол, синтетические жирные кислоты и их соли.

Введение гидрофилизирующих и гидрофобизирующих добавок повышает пластичность, подвижность бетонных смесей и качество бетона.

Пластифицированный портландцемент – изготавливают путем введения при помоле клинкера около 0,25% СДБ (в расчете на сухое вещество), в результате растворам и бетонным смесям придается повышенная подвижность. Пластифицирующий эффект используется для уменьшения водоцементного отношения (В/Ц) и повышения плотности, морозостойкости и водонепроницаемости бетона. При неизменном В/Ц появляется возможность снизить расход цемента.

Гидрофобный портландцемент – изготавливают, вводя при помоле клинкера 0,1–0,2% мылонафта или других гидрофобизирующих добавок. Эти вещества, адсорбируясь на частицах цемента, понижают его гигроскопичность, поэтому такой цемент может долго храниться в очень влажных условиях, сохраняя свою активность.

Гидрофобизирующие вещества действуют и как пластификаторы, повышая подвижность бетонных смесей. После затвердевания бетона они существенно повышают его водо- и морозостойкость, увеличивают стойкость к коррозии.

Белый и цветные портландцементы

Это декоративные цементы, их основой является белый клинкер, который изготавливают из чистых известняков и белых глин, почти не содержащих оксидов железа или марганца. Обжигают сырьевую смесь газовым топливом. По степени белизны подразделяются на 3 сорта, имеют марки по прочности 400 и 500.

Цветные портландцементы (желтый, розовый, красный и др.) получают совместным помолом белого клинкера с соответствующими стойкими минеральными пигментами.

Белые и цветные цементы применяются для индустриальной отделки стеновых панелей, при изготовлении лестничных ступеней, цементно-бетонных покрытий площадей и для архитектурно-художественного оформления зданий и сооружений.

Цементы для строительных растворов

Изготавливают совместным помолом клинкера и минеральных добавок, взятых примерно в равных количествах или в соотношении до 30% клинкера и 70% добавок. При помоле могут вводиться пластификаторы.

Получаются низкомарочные цементы (активность в 2-3 раза меньше портландцемента), прочность которых достаточна для кладочных и штукатурных работ. Основное достоинство – экономия дорогого клинкера и в результате низкая стоимость таких цементов.

9.11. Глиноземистый цемент

Глинозёмистый цемент по минеральному составу и техническим свойствам существенно отличается от портландцемента. Глиноземистый цемент – это быстротвердеющее и высокопрочное гидравлическое вяжущее вещество, получаемое путем тонкого измельчения клинкера, содержащего преимущественно низкоосновные алюминаты кальция.

Для получения клинкера глинозёмистого цемента сырьевую смесь, составленную из известняка CaCO3 и боксита Al2O3×nH2O подвергают спеканию (температура около 1300 o C) или плавлению (1400 o C).

Трудность помола клинкера (требуются большие энергозатраты), а также ценность бокситов обуславливают высокую стоимость глинозёмистого цемента и ограничивают его выпуск.

Глинозёмистый цемент обладает высокой прочностью, если он твердеет при умеренной температуре (не более 25 o C), поэтому его нельзя применять для бетонирования массивных конструкций из-за разогрева бетона, а также подвергать тепловлажностной обработке.

В процессе твердения глинозёмистого цемента образуется высокопрочное вещество – двухкальциевый гидроалюминат:

Глинозёмистый цемент обладает очень быстрым твердением. Марки глинозёмистого цемента устанавливаются по результатам испытаний образцов трехсуточного возраста и имеют значения 400, 500 и 600. Уже через 1 сутки прочность на сжатие превышает половину марочного значения. При этом глинозёмистый цемент обладает нормальными сроками схватывания: начало – не ранее чем через 30 минут, а конец – не позднее чем через 12 часов после затворения. Тепловыделение глинозёмистого цемента при твердении в 1,5 больше, чем у портландцемента (250 – 370 кДж/кг).

В продуктах гидратации глинозёмистого цемента не содержится Ca(ОН)2 и трехкальциевого шестиводного гидроалюмината (если температура твердения не превышает 25 o C), поэтому бетон на глинозёмистом цементе обладает высокой коррозионной стойкостью в сульфатной, морской и углекислой водах. Однако сильные кислоты и концентрированные растворы щелочей могут разрушить этот цемент.

Глинозёмистый цемент обычно применяют в специальных сооружениях, при быстрых ремонтных и монтажных работах, для изготовления жаростойких бетонов и растворов. Кроме того, он входит в состав многих разновидностей расширяющихся цементов.

9.12. Расширяющиеся и безусадочные цементы

Водонепроницаемый расширяющийся цемент – является быстросхватывающимся и быстротвердеющим гидравлическим вяжущим. Его получают путем тщательного смешивания глиноземистого цемента (

20%) и молотого специально изготовленного высокоосновного гидроалюмината кальция (

10%). Впервые был применен для зачеканки швов тюбингов Московского метрополитена взамен свинца.

Гипсоглиноземистый расширяющийся цемент – быстротвердеющее гидравлическое вяжущее, получаемое совместным тонким измельчением высокоглиноземистого клинкера или шлака и природного двуводного гипса (до 30%). Обладает свойствами расширения при твердении в воде; при твердении на воздухе он проявляет безусадочные свойства. Применяется для омоноличивания стыков сборных конструкций, гидроизоляционных штукатурок, плотных бетонов в железобетонном судостроении и при возведении емкостей для хранения нефтепродуктов.

Расширяющийся портландцемент – гидравлическое вяжущее вещество, получаемое совместным тонким измельчением портландцементного клинкера (58–63%), глиноземистого шлака или клинкера (5–7%), доменного гранулированного шлака или других АМД (23–28%). Отличается быстрым твердением в условиях кратковременного пропаривания, высокой плотностью и водонепроницаемостью цементного камня, а также способностью расширяться в водных условиях или на воздухе при постоянном увлажнении в течение первых 3 суток.

Напрягающий цемент – состоит из 65–75% портландцемента, 13– 20% глиноземистого цемента, 6 – 10% гипса. Име

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *