какой метод вызывается в python автоматически при создании экземпляра класса
Классы, объекты и методы в Python
Введение
Примеры
Основное наследование
Наследование в Python основано на сходных идеях, используемых в других объектно-ориентированных языках, таких как Java, C ++ и т. Д. Новый класс может быть получен из существующего класса следующим образом.
Определим родительский Rectangle класс в примере ниже, который неявно наследует от object :
Rectangle класс может быть использован в качестве базового класса для определения Square класса, как квадрат является частным случаем прямоугольника.
Объекты производного класса могут получать доступ и изменять атрибуты своих базовых классов:
Встроенные функции, которые работают с наследованием
Переменные класса и экземпляра
Переменные экземпляра уникальны для каждого экземпляра, а переменные класса являются общими для всех экземпляров.
Переменные класса могут быть доступны в экземплярах этого класса, но присвоение атрибуту класса создаст переменную экземпляра, которая затеняет переменную класса
Связанные, несвязанные и статические методы
класс A (объект): def f (self, x): return 2 * x Af # (в Python 3.x)
Af # (в Python 2.x) Af__class__ # Af__func__ #
импорт inspect inspect.isfunction (Af) # True inspect.ismethod (Af) # False импорт inspect inspect.isfunction (Af) # False inspect.ismethod (Af) # True
Обратите внимание, что методы класса привязаны к классу даже при обращении к экземпляру:
Классы нового стиля против старого стиля
Новые классы в стиле были введены в Python 2.2 для объединения классов и типов. Они наследуют от верхнего уровня object типа. Класс нового типа является определенный пользователем тип, и очень похож на встроенных типов.
В Python 3 классы старого стиля были удалены.
Значения по умолчанию для переменных экземпляра
Если переменная содержит значение неизменяемого типа (например, строку), тогда можно назначить значение по умолчанию, подобное этому.
Нужно быть осторожным при инициализации изменяемых объектов, таких как списки в конструкторе. Рассмотрим следующий пример:
Такое поведение вызвано тем, что в Python параметры по умолчанию связаны при выполнении функции, а не при ее объявлении. Чтобы получить переменную экземпляра по умолчанию, которая не разделяется между экземплярами, следует использовать такую конструкцию:
Множественное наследование
Вот простой пример:
Теперь, если мы создаем экземпляр FooBar, если мы ищем атрибут foo, мы видим, что атрибут Foo находится первым
Можно просто сказать, что алгоритм Python MRO
То есть, например, Bar не может наследовать от FooBar, а FooBar наследует от Bar.
Множественное наследование с помощью метода init класса, когда у каждого класса есть собственный метод init, тогда мы пытаемся получить множественное наследование, тогда вызывается только метод init класса, который наследуется первым.
для примера ниже Foo метод инициализировать класс вызывался класс Bar не INIT вызывался
Выход:
Выход:
Дескрипторы и точечные поиски
Методы класса: альтернативные инициализаторы
Методы класса представляют альтернативные способы создания экземпляров классов. Чтобы проиллюстрировать это, давайте посмотрим на пример.
Однако с этим битом кода связаны две основные проблемы:
Классная композиция
Композиция классов позволяет явные отношения между объектами. В этом примере люди живут в городах, которые принадлежат странам. Композиция позволяет людям получить доступ ко всем людям, живущим в их стране:
Обезьяна Ямочный
Но теперь мы хотим добавить еще одну функцию позже в коде. Предположим, что эта функция выглядит следующим образом.
Эти дополнения доступны для всех экземпляров этого класса (или его подклассов) автоматически. Например:
Обратите внимание, что, в отличие от некоторых других языков, этот метод не работает для определенных встроенных типов и не считается хорошим стилем.
Список всех членов класса
dir() функция может быть использована для получения списка членов класса:
Предостережения:
Введение в классы
Класс, функционирующий как шаблон, который определяет основные характеристики конкретного объекта. Вот пример:
Есть несколько вещей, на которые стоит обратить внимание при рассмотрении приведенного выше примера.
Теперь давайте сделаем несколько экземпляров нашего Person класса!
свойства
Классы Python поддерживают свойства, которые выглядят как обычный переменный объект, но с возможностью прикрепления пользовательского поведения и документации.
Помимо полезного синтаксиса, описанного выше, синтаксис свойства позволяет проверять или добавлять другие дополнения к этим атрибутам. Это может быть особенно полезно с общедоступными API-интерфейсами, где пользователю должен быть предоставлен определенный уровень помощи.
Синглтон класс
Для использования вы можете использовать Instance метод
Синтаксис
Параметры
Примечания
Научим основам Python и Data Science на практике
Это не обычный теоритический курс, а онлайн-тренажер, с практикой на примерах рабочих задач, в котором вы можете учиться в любое удобное время 24/7. Вы получите реальный опыт, разрабатывая качественный код и анализируя реальные данные.
Python: статические методы, методы класса и экземпляра класса
Aug 1, 2019 · 4 min read
Согласно модели данных Python, язык предлагает три вида методов: статические, класса и экземпляра класса. Давайте посмотрим, что же происходит за кулисами каждого из видов методов. Понимание принципов их работы поможет в создании красивого и эффективного кода. Начнём с самого простого примера, в котором демонстрируются все три вида методов.
Методы экземпляра класса
Это наиболее часто используемый вид методов. Методы экземпляра класса принимают объект класса как первый аргумент, который принято называть self и который указывает на сам экземпляр. Количество параметров метода не ограничено.
Встроенный пример метода экземпляра — str.upper() :
Методы класса
Методы класса привязаны к самому классу, а не его экземпляру. Они могут менять состояние класса, что отразится на всех объектах этого класса, но не могут менять конкретный объект.
Встроенный пример метода класса — dict.fromkeys() — возвращает новый словарь с переданными элементами в качестве ключей.
Статические методы
Их можно воспринимать как методы, которые “не знают, к какому классу относятся”.
Таким образом, статические методы прикреплены к классу лишь для удобства и не могут менять состояние ни класса, ни его экземпляра.
С теорией достаточно. Давайте разберёмся с работой методов, создав объект нашего класса и вызвав поочерёдно каждый из методов: instancemethod, classmethod and staticmethod.
Теперь давайте вызовем метод класса:
Мы видим, что метод класса classmethod() имеет доступ к самому классу ToyClass, но не к его конкретному экземпляру объекта. Запомните, в Python всё является объектом. Класс тоже объект, который мы можем передать функции в качестве аргумента.
Заметьте, что self и cls — не обязательные названия и эти параметры можно называть иначе.
Это лишь общепринятые обозначения, которым следуют все. Тем не менее они должны находиться первыми в списке параметров.
Вызовем статический метод:
Да, это может вас удивить, но статические методы можно вызывать через объект класса. Вызов через точку нужен лишь для удобства. На самом же деле в случае статического метода никакие аргументы ( self или cls ) методу не передаются.
То есть статические методы не могут получить доступ к параметрам класса или объекта. Они работают только с теми данными, которые им передаются в качестве аргументов.
Теперь давайте вызовем те же самые методы, но на самом классе.
Метод класса и статический метод работают, как нужно. Однако вызов метода экземпляра класса выдаёт TypeError, так как метод не может получить на вход экземпляр класса.
Теперь, когда вы знаете разницу между тремя видами методов, давайте рассмотрим реальный пример для понимания того, когда и какой метод стоит использовать. Пример взят отсюда.
Когда использовать каждый из методов?
Выбор того, какой из методов использовать, может показаться достаточно сложным. Тем не менее с опытом этот выбор делать гораздо проще.
Чаще всего метод класса используется тогда, когда нужен генерирующий метод, возвращающий объект класса. Как видим, метод класса from_birth_year используется для создания объекта класса Person по году рождения, а не возрасту.
Статические методы в основном используются как вспомогательные функции и работают с данными, которые им передаются.
Класс и объект в Python
Объектно-ориентированное программирование в Python
Python — это процедурно-ориентированный и одновременно объектно-ориентированный язык программирования.
Процедурно-ориентированный
«Процедурно-ориентированный» подразумевает наличие функций. Программист может создавать функции, которые затем используются в сторонних скриптах.
Объектно-ориентированный
«Объектно-ориентированный» подразумевает наличие классов. Есть возможность создавать классы, представляющие собой прототипы для будущих объектов.
Создание класса в Python
Синтаксис для написания нового класса:
Атрибут:
Атрибут — это элемент класса. Например, у прямоугольника таких 2: ширина ( width ) и высота ( height ).
Метод:
Конструктор:
Создание объекта с помощью класса Rectangle:
Что происходит при создании объекта с помощью класса?
При создании объекта класса Rectangle запускается конструктор выбранного класса, и атрибутам нового объекта передаются значения аргументов. Как на этом изображении:
Конструктор с аргументами по умолчанию
В других языках программирования конструкторов может быть несколько. В Python — только один. Но этот язык разрешает задавать значение по умолчанию.
Все требуемые аргументы нужно указывать до аргументов со значениями по умолчанию.
Сравнение объектов
В Python объект, созданный с помощью конструктора, занимает реальное место в памяти. Это значит, что у него есть точный адрес.
Атрибуты
В Python есть два похожих понятия, которые на самом деле отличаются:
Стоит разобрать на практике:
Атрибут
Объекты, созданные одним и тем же классом, будут занимать разные места в памяти, а их атрибуты с «одинаковыми именами» — ссылаться на разные адреса. Например:
Атрибуты функции
Обычно получать доступ к атрибутам объекта можно с помощью оператора «точка» (например, player1.name ). Но Python умеет делать это и с помощью функции.
Функция | Описание |
---|---|
getattr (obj, name[,default]) | Возвращает значение атрибута или значение по умолчанию, если первое не было указано |
hasattr (obj, name) | Проверяет атрибут объекта — был ли он передан аргументом «name» |
setattr (obj, name, value) | Задает значение атрибута. Если атрибута не существует, создает его |
delattr (obj, name) | Удаляет атрибут |
Встроенные атрибуты класса
Объекты класса — дочерние элементы по отношению к атрибутам самого языка Python. Таким образом они заимствуют некоторые атрибуты:
Переменные класса
Переменные класса в Python — это то же самое, что Field в других языках, таких как Java или С#. Получить к ним доступ можно только с помощью имени класса или объекта.
Для получения доступа к переменной класса лучше все-таки использовать имя класса, а не объект. Это поможет не путать «переменную класса» и атрибуты.
У каждой переменной класса есть свой адрес в памяти. И он доступен всем объектам класса.
Составляющие класса или объекта
Метод объекта/экземпляра класса в Python.
Обычно метод вызывается сразу после его привязки:
При ссылке на атрибут экземпляра, не являющийся атрибутом данных, выполняется поиск экземпляра класса. Если имя обозначает допустимый атрибут класса, который является объектом функции, объект метода создается путем упаковки указателей объекта экземпляра и объекта функции, только что найденных вместе в абстрактном объекте: это объект метода. Когда объект метода вызывается со списком аргументов, новый список аргументов создается из экземпляра класса и списка аргументов этого класса, а объект функции вызывается с этим новым списком аргументов.
Любой функциональный объект, являющийся атрибутом класса, определяет метод для экземпляров этого класса. Нет необходимости в том, чтобы определение функции было текстуально заключено в определение класса: присвоение объекта функции локальной переменной в классе также нормально.
Методы могут вызывать другие методы, используя атрибуты метода собственного аргумента:
Методы могут ссылаться на глобальные имена так же, как обычные функции. Глобальной областью видимости, связанной с методом, является модуль, содержащий его определение. Класс никогда не используется в качестве глобальной области видимости. Хотя редко встречаются веские причины для использования глобальных данных в методе, существует много законных вариантов использования глобальной области видимости. Функции и модули, импортированные в глобальную область, могут использоваться методами, а также функциями и классами, определенными в нем. Обычно класс, содержащий метод, сам определяется в этой глобальной области видимости.
Поддержка получения произвольных атрибутов методами.
Примеры работы с классами в Python
Python — объектно-ориентированный язык с начала его существования. Поэтому, создание и использование классов и объектов в Python просто и легко. Эта статья поможет разобраться на примерах в области поддержки объектно-ориентированного программирования Python. Если у вас нет опыта работы с объектно-ориентированным программированием (OOП), ознакомьтесь с вводным курсом или учебным пособием, чтобы понять основные понятия.
Создание классов
Пример создания класса на Python:
Создание экземпляров класса
Доступ к атрибутам
Теперь, систематизируем все.
При выполнении этого кода, мы получаем следующий результат:
Вы можете добавлять, удалять или изменять атрибуты классов и объектов в любой момент.
Вместо использования привычных операторов для доступа к атрибутам вы можете использовать эти функции:
Встроенные атрибуты класса
Для вышеуказанного класса давайте попробуем получить доступ ко всем этим атрибутам:
Когда этот код выполняется, он возвращает такой результат:
Удаление объектов (сбор мусора)
Python автоматически удаляет ненужные объекты (встроенные типы или экземпляры классов), чтобы освободить пространство памяти. С помощью процесса ‘Garbage Collection’ Python периодически восстанавливает блоки памяти, которые больше не используются.
Сборщик мусора Python запускается во время выполнения программы и тогда, когда количество ссылок на объект достигает нуля. С изменением количества обращений к нему, меняется количество ссылок.
Пример работы __del__()
Деструктор __del__() выводит имя класса того экземпляра, который должен быть уничтожен:
Когда вышеуказанный код выполняется и выводит следующее:
Наследование класса в python
Наследование — это процесс, когда один класс наследует атрибуты и методы другого. Класс, чьи свойства и методы наследуются, называют Родителем или Суперклассом. А класс, свойства которого наследуются — класс-потомок или Подкласс.
Вместо того, чтобы начинать с нуля, вы можете создать класс, на основе уже существующего. Укажите родительский класс в круглых скобках после имени нового класса.
Класс наследник наследует атрибуты своего родительского класса. Вы можете использовать эти атрибуты так, как будто они определены в классе наследнике. Он может переопределять элементы данных и методы родителя.
Синтаксис наследования класса
Классы наследники объявляются так, как и родительские классы. Только, список наследуемых классов, указан после имени класса.