какой метод проецирования принят за основной

Тест по черчению на тему «Проецирование»

Ищем педагогов в команду «Инфоурок»

Учреждение «Павлодарский нефтегазовый колледж»

Лобко Ирина Николаевна

Какой метод проецирования принят за основной?

Как называется способ проецирования, когда проецирующие лучи исходят из одной точки (центра проецирования)?

Как называется способ проецирования, когда проецирующие лучи параллельны между собой?

Как называется способ параллельного проецирования, когда проецирующие лучи падают на плоскость проекций под прямым углом?

Как называется способ параллельного проецирования, когда проецирующие лучи падают на плоскость проекций под любым непрямым углом?

Как называется процесс получения проекции предмета на плоскости проекций?

Изображение на плоскости предмета, расположенного в пространстве, полученное с помощью лучей, проведенных через каждую характерную точку предмета до пересечения этих лучей с плоскостью, называется:

Какой метод проецирования представлен на рисунке?

какой метод проецирования принят за основной

Какой метод проецирования представлен на рисунке?

какой метод проецирования принят за основной

Какой метод проецирования представлен на рисунке?

какой метод проецирования принят за основной

Проекцией точки на плоскости называется

произвольно взятая точка плоскости,

произвольно взятая точка пространства

отображение точки на плоскости

отображение точки пространства на плоскости

прямая, проведенная через точку пространства,

прямая, соединяющая точку пространства с ее проекцией на плоскости

прямая на плоскости проекций

проекция прямой на плоскости

проекция точки на плоскости

какой метод проецирования принят за основной

Номер материала: ДБ-897947

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

какой метод проецирования принят за основной

какой метод проецирования принят за основной

В Москве запустили онлайн-проект по борьбе со школьным буллингом

Время чтения: 2 минуты

какой метод проецирования принят за основной

Путин попросил привлекать родителей к капремонту школ на всех этапах

Время чтения: 1 минута

какой метод проецирования принят за основной

В российских школах оборудуют кабинеты для сообщества «Большой перемены»

Время чтения: 1 минута

какой метод проецирования принят за основной

В школе в Пермском крае произошла стрельба

Время чтения: 1 минута

какой метод проецирования принят за основной

СК предложил обучать педагогов выявлять деструктивное поведение учащихся

Время чтения: 1 минута

какой метод проецирования принят за основной

Минпросвещения разработало проект новых правил русского языка

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Лекция 1. Методы проецирования

1.1. Центральное проецирование

Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.

Центральное проецирование заключается в проведении через каждую точку (А, В, С,…) изображаемого объекта и определённым образом выбранный центр проецирования (S) прямой линии (SA, SB, >… — проецирующего луча).

какой метод проецирования принят за основной

Рисунок 1.1 – Центральное проецирование

Введём следующие обозначения (Рисунок 1.1):

SA, SB – проецирующие прямые (проецирующие лучи).

Примечание: левой клавишей мыши можно переместить точку в горизонтальной плоскости, при щелчке на точке левой клавишей мыши, изменится направление перемещения и можно будет ее переместить по вертикали.

Центральной проекцией точки называется точка пересечения проецирующей прямой, проходящей через центр проецирования и объект проецирования (точку), с плоскостью проекций.

Докажем это утверждение.

На рисунке 1.1: точка А1 – центральная проекция точки А на плоскости проекций π1. Но эту же проекцию могут иметь все точки, лежащие на проецирующей прямой. Возьмём на проецирующей прямой SA точку С. Центральная проекция точки С (С1) на плоскости проекций π1 совпадает с проекцией точки А (А1):

Следует вывод, что по проекции точки нельзя судить однозначно о её положении в пространстве.

Чтобы устранить эту неопределенность, т.е. сделать чертеж обратимым, введём еще одну плоскость проекций (π2) и ещё один центр проецирования (S2) (Рисунок 1.2).

какой метод проецирования принят за основной

Рисунок 1.2 – Иллюстрация 1-го и 2-го свойств

Построим проекции точки А на плоскости проекций π2. Из всех точек пространства только точка А имеет своими проекциями А1 на плоскость π1 и А2 на π2 одновременно. Все другие точки лежащие на проецирующих лучах будут иметь хотя бы одну отличную проекцию от проекций точки А (например, точка В).

Докажем данное свойство.

Соединим точки А и В между собой (Рисунок 1.2). Получим отрезок АВ, задающий прямую. Треугольник ΔSAB задает плоскость, обозначенную через σ. Известно, что две плоскости пересекаются по прямой: σ∩π1=А1В1, где А1В1 – центральная проекция прямой, заданной отрезком АВ.

Метод центрального проецирования – это модель восприятия изображения глазом, применяется главным образом при выполнении перспективных изображений строительных объектов, интерьеров, а также в кинотехнике и оптике. Метод центрального проецирования не решает основной задачи, стоящей перед инженером – точно отразить форму, размеры предмета, соотношение размеров различных элементов.

1.2. Параллельное проецирование

Рассмотрим метод параллельного проецирования. Наложим три ограничения, которые позволят нам, пусть и в ущерб наглядности изображения, получить чертёж более удобным для использования его на практике:

Таким образом, наложив эти ограничения на метод центрального проецирования, мы пришли к его частному случаю – методу параллельного проецирования (Рисунок 1.3).Проецирование, при котором проецирующие лучи, проходящие через каждую точку объекта, параллельно выбранному направлению проецирования P, называется параллельным.

какой метод проецирования принят за основной

Рисунок 1.3 – Метод параллельного проецирования

Проведём через точки А и В проецирующие лучи, параллельные заданному направлению проецирования Р. Проецирующий луч проведённый через точку А пересечёт плоскость проекций π1 в точке А1. Аналогично проецирующий луч, проведённый через точку В пересечет плоскость проекций в точке В1. Соединив точки А1 и В1, получим отрезок А1 В1– проекция отрезка АВ на плоскость π1.

1.3. Ортогональное проецирование. Метод Монжа

Четырехугольник АА1В1В задаёт плоскость γ, которая называется проецирующей, поскольку она перпендикулярна к плоскости π1 (γ⊥π1). В дальнейшем будем использовать только прямоугольное проецирование.

какой метод проецирования принят за основной

Рисунок 1.4 – Ортогональное проецирование

какой метод проецирования принят за основной

Рисунок 1.5- Монж, Гаспар (1746-1818)

Основоположником ортогонального проецирования считается французский учёный Гаспар Монж (Рисунок 1.5).

До Монжа строители, художники и учёные обладали довольно значительными сведениями о проекционных способах, и, всё же, только Гаспар Монж является творцом начертательной геометрии как науки.

Гаспар Монж родился 9 мая 1746 года в небольшом городке Боне (Бургундия) на востоке Франции в семье местного торговца. Он был старшим из пяти детей, которым отец, несмотря на низкое происхождение и относительную бедность семьи, постарался обеспечить самое лучшее образование из доступного в то время для выходцев из незнатного сословия. Его второй сын, Луи, стал профессором математики и астрономии, младший — Жан также профессором математики, гидрографии и навигации. Гаспар Монж получил первоначальное образование в городской школе ордена ораторианцев. Окончив её в 1762 году лучшим учеником, он поступил в колледж г. Лиона, также принадлежавший ораторианцам. Вскоре Гаспару доверяют там преподавание физики. Летом 1764 года Монж составил замечательный по точности план родного города Бона. Необходимые при этом способы и приборы для измерения углов и вычерчивания линий были изобретены самим составителем.

Во время обучения в Лионе получил предложение вступить в орден и остаться преподавателем колледжа, однако, вместо этого, проявив большие способности к математике, черчению и рисованию, сумел поступить в Мезьерскую школу военных инженеров, но (из-за происхождения) только на вспомогательное унтер-офицерское отделение и без денежного содержания. Тем не менее, успехи в точных науках и оригинальное решение одной из важных задач фортификации (о размещении укреплений в зависимости от расположения артиллерии противника) позволили ему в 1769 году стать ассистентом (помощником преподавателя) математики, а затем и физики, причём уже с приличным жалованием в 1800 ливров в год.

В 1770 году в возрасте 24-х лет Монж занимает должность профессора одновременно по двум кафедрам — математики и физики, и, кроме того, ведёт занятия по резанию камней. Начав с задачи точной резки камней по заданным эскизам применительно к архитектуре и фортификации, Монж пришёл к созданию методов, обобщённых им впоследствии в новой науке – начертательной геометрии, творцом которой он по праву считается. Учитывая возможность применения методов начертательной геометрии в военных целях при строительстве укреплений, руководство Мезьерской школы не допускало открытой публикации вплоть до 1799 года, книга вышла под названием Начертательная геометрия (Géométrie descriptive) (стенографическая запись этих лекций была сделана в 1795 году). Изложенный в ней подход к чтению лекций по этой науке и выполнению упражнений сохранился до наших дней. Еще один значительный труд Монжа – Приложение анализа к геометрии (L’application de l’analyse à la géometrie, 1795) – представляет собой учебник аналитической геометрии, в котором особый акцент делается на дифференциальных соотношениях.

В 1780 был избран членом Парижской академии наук, в 1794 стал директором Политехнической школы. В течение восьми месяцев занимал пост морского министра в правительстве Наполеона, заведовал пороховыми и пушечными заводами республики, сопровождал Наполеона в его экспедиции в Египет (1798–1801). Наполеон пожаловал ему титул графа, удостоил многих других отличий.

Метод изображения объектов по Монжу заключается в двух основных моментах:

1. Положение геометрического объекта в пространстве, в данном примере точки А, рассматривается относительно двух взаимно перпендикулярных плоскостей π1 и π2 (Рисунок 1.6).

Они условно разделяют пространство на четыре квадранта. Точка А расположена в первом квадранте. Декартова система координат послужила основой для проекций Монжа. Монж заменил понятие координатных осей проекций на линию пересечения плоскостей проекций (ось проекций) и предложил совместить координатные плоскости в одну путем поворота их вокруг координатных осей.

какой метод проецирования принят за основной
Рисунок 1.6 – Модель построения проекций точки

π1 – горизонтальная (первая) плоскость проекций

π2 – фронтальная (вторая) плоскость проекций

Рассмотрим пример проецирования точки А на две взаимно перпендикулярные плоскости проекций π1 и π2.

Опустим из точки А перпендикуляры (проецирующие лучи) на плоскости π1 и π2 и отметим их основания, то есть точки пересечения этих перпендикуляров (проецирующих лучей) с плоскостями проекций. А1 – горизонтальная (первая) проекция точки А;А2 – фронтальная (вторая) проекция точки А; АА1 и АА2 – проецирующие прямые. Стрелки показывают направление проецирования на плоскости проекций π1 и π2. Такая система позволяет однозначно определить положение точки относительно плоскостей проекций π1 и π2:

2. Совместим поворотом вокруг оси проекций π21 плоскости проекций в одну плоскость (π1 с π2), но так, чтобы изображения не накладывались друг на друга, (в направлении α, Рисунок 1.6), получим изображение, называемое прямоугольным (ортогональным) чертежом (Рисунок 1.7):
какой метод проецирования принят за основной
Рисунок 1.7 – Ортогональный чертеж

1.4. Прямоугольные проекции точки. Свойства ортогонального чертежа

1. Две прямоугольные проекции точки лежат на одной линии проекционной связи, перпендикулярной к оси проекций.

2. Две прямоугольные проекции точки однозначно определяют её положение в пространстве относительно плоскостей проекций.

Убедимся в справедливости последнего утверждения, для чего повернём плоскость π1 в исходное положение (когда π1⊥π2). Для того, чтобы построить точку А необходимо из точек А1 и А2 восстановить проецирующие лучи, а фактически – перпендикуляры к плоскостям π1и π2, соответственно. Точка пересечения этих перпендикуляров фиксирует в пространстве искомую точку А. Рассмотрим ортогональный чертеж точки А (Рисунок 1.8).

какой метод проецирования принят за основной
Рисунок 1.8 – Построение эпюра точки

Введём третью (профильную) плоскость проекций π3 перпендикулярную π1 и π2 (задана осью проекций π23).

Расстояние от профильной проекции точки до вертикальной оси проекций А0A3 позволяет определить расстояние от точки А до фронтальной плоскости проекций π2. Известно, что положение точки в пространстве можно зафиксировать относительно декартовой системы координат с помощью трёх чисел (координат) A(XA; YA; ZA) или относительно плоскостей проекций с помощью её двух ортогональных проекций (A1=(XA; YA); A2=(XA; ZA)). На ортогональном чертеже по двум проекциям точки можно определить три её координаты и, наоборот, по трём координатам точки, построить её проекции (Рисунок 1.9, а и б).

какой метод проецирования принят за основной
а б
Рисунок 1.9 – Построение эпюра точки по её координатам

По расположению на эпюре проекций точки можно судить о её расположении в пространстве:

Для определения в каком квадранте пространства расположена точка, достаточно определить знак координат точки.

Зависимости квадранта положения точки и знаков координат

XYZ
I+++
II++
III+
IV++

Упражнение

Решение задачи: по оси OX отложить значение координаты XA=60, затем через эту точку на оси OX восстановить линию проекционной связи, перпендикулярную к OX, по которой вверх отложить значение координаты ZA=40, а вниз – значение координаты YA=20 (Рисунок 1.10). Все координаты положительные, значит точка расположена в I квадранте.

какой метод проецирования принят за основной
Рисунок 1.10 – Решение задачи

1.5. Задачи для самостоятельного решения

1. По эпюру определите положение точки относительно плоскостей проекций (Рисунок 1.11).

какой метод проецирования принят за основной
Рисунок 1.11

2. Достройте недостающие ортогональные проекции точек А, В, С на плоскости проекций π1, π2, π3 (Рисунок 1.12).

какой метод проецирования принят за основной
Рисунок 1.12

3. Постройте проекции точки:

4. Постройте ортогональные проекции точки К, расположенной во втором квадранте и удаленной от плоскостей проекций π1 на 40 мм, от π2 — на 15 мм.

Источник

Основы проецирования

Проецированием называется процесс получения изображения предмета на плоскости.

Получившееся при этом изображение называют проекцией. Проекция – в переводе с латинского – «бросать (отбрасывать) вперёд».

В черчении изображения получают по так называемому методу проекций.

Чтобы построить изображение предмета по методу проекций, нужно через точки на предмете провести воображаемые лучи до встречи их с плоскостью. Эти лучи называются проецирующими. Плоскость, на которой получается изображение предмета, называется плоскостью проекций.

Если проецирующие лучи расходятся из одной точки, проецирование называется центральным (рис. 60а). Точка, из которой выходят лучи, называется центром проецирования.

Полученное при этом изображение называется центральной проекцией. Пример: тени, отброшенные от предмета лучами электрической лампочки.

Если проецирующие лучи параллельны друг другу, то проецирование называется параллельным (рис. 60б), а полученное изображение – параллельной проекцией. Пример: солнечные тени.

При параллельном проецировании все лучи падают на плоскость проекций под одним и тем же углом. Если это любой острый угол, то проецирование называется косоугольным (рис. 61а). В косоугольной проекции, как и в центральной, форма и величина предмета искажаются.

Когда проецирующие лучи перпендикулярны к плоскости проекций, проецирование называют прямоугольным (рис. 61б), а полученное изображение – прямоугольной проекцией.

Способ прямоугольного проецирования является основным в черчении.

Проецирование на одну, две и три взаимно перпендикулярные плоскости проекций

Расположим предмет перед плоскостью проекций так, чтобы на получившемся изображении были видны три его стороны (рис. 62).

По такому изображению легко представить пространственный образ предмета.

Такое проецирование в черчении используют для построения наглядных изображений, однако, на наглядных изображениях предметы получают большие искажения и по ним трудно определить истинные размеры предмета.

Теперь расположим предмет перед плоскостью проекций так, чтобы на изображении была видна только одна его сторона, и построим его прямоугольную проекцию (рис. 63а).

На данном изображении проекции рёбер предмета, которые параллельны двум его измерениям (например: длина и ширина), равны натуральным размерам. Но на таком изображении нет третьего измерения предмета (высоты), поэтому оно не наглядно. Такие изображения используют в случаях, когда высота (толщина) детали одинакова во всех её точках (например, чертежи прокладок). Тогда на чертеже такой детали делают запись, указывающую её толщину (высоту). Пример приведен на рис. 63б (S4).

Иногда на одной плоскости изображают предметы, не имеющие одинаковой высоты во всех его точках. Тогда рядом с изображением точки числом указывают её высоту. Такие изображения называют проекциями с числовыми отметками (рис. 63в).

Чтобы судить о трёх измерениях предмета, его необходимо спроецировать ещё на одну плоскость проекций (П2), которая параллельна другой паре измерений предмета. Тогда вторая плоскость будет расположена перпендикулярно первой плоскости проекций (рис. 64).

Теперь по двум прямоугольным проекциям можно судить о размерах и форме предмета. Хотя форма не всегда ясно выражается двумя проекциями. Поэтому при изображении предметов сложной формы необходимо строить три (а иногда и более) прямоугольных проекции.

Возьмём три взаимно перпендикулярные плоскости проекций (рис. 65).

Одна из них занимает горизонтальное положение, её называют горизонтальной плоскостью проекций и обозначают П1. Две другие плоскости — вертикальные. Одну называют фронтальной плоскостью проекций (от французского слова «фронталь» – «лицом к зрителю»), другую – профильной плоскостью проекций (от французского слова «профиль» – «вид сбоку») и обозначают соответственно П2 и П3.

Линии пересечения плоскостей проекций называют осями проекций и обозначают буквами x, y, z. Точку пересечения осей проекций обозначают буквой О.

В трёхгранный угол, образованный плоскостями проекций, поместим параллелепипед и, проведя проецирующие лучи перпендикулярно плоскостям проекций, получим его проекции. Изображение на плоскости П1 – горизонтальная проекция, на плоскости П2 и П3 – соответственно фронтальная и профильная проекции.

Совмещённые плоскости с построенными на них изображениями предмета показаны на рис. 65б. Линии, соединяющие между собой проекции, называют линиями связи. Линии связи всегда перпендикулярны осям проекций.

На чертежах плоскости проекций не ограничивают и не обозначают. Кроме того, на чертеже при изображении предмета можно не наносить и оси проекций, так как при параллельном проецировании расстояние от плоскости проекций до изображаемого предмета не влияет на очертание его проекций (рис. 66а).

Это даёт возможность устанавливать произвольное расстояние между проекциями, сохраняя между ними проекционную связь даже при отсутствии линий связи (рис. 66б). Такой чертёж называется безосным. При построении проекций здесь пользуются осями симметрии предмета, центровыми линиями или характерными его плоскостями (рис. 67).

Метод прямоугольного проецирования на две и три взаимно перпендикулярные плоскости был разработан французским учёным-геометром Гаспаром Монжем в конце XVIII века. Поэтому его называют ещё методом Монжа.

Г. Монж положил начало развитию новой науки об изображении предметов – начертательной геометрии.

Способы построения третьей проекции

Проекционную связь между горизонтальной и профильной проекциями можно установить несколькими графическими приёмами:

На рис. 68а,б,в эти приёмы показаны на примере построения третьей проекции точки.

Удобнее всего пользоваться третьим способом, т.к. при наименьшем количестве графических операций достигается большая точность построения.

Если три вида уже построены, то место постоянной прямой чертежа произвольно выбирать нельзя. Нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии предмета. Через полученную точку К под углом 45° проводят отрезок прямой. Если осей симметрии на чертеже нет, то продолжают до пересечения в точке К1 горизонтальную и профильную проекции любой грани, проецирующейся в виде отрезков прямой (рис. 69).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *