какой метод очистки можно применить для пыли с размером частиц 500 мкм
Очистка от пыли и аэрозолей
В процессах пылеулавливания существенное значение имеют размеры частиц пыли, их плотность, заряд, удельное сопротивление, адгезионные свойства, смачиваемость и т. п.
По размеру твердых частиц выделяют следующие виды пыли: 1 — более 10 мкм, 2 — 0,25-10 мкм, 3 — 0,01-0,25 мкм, 4 — менее 0,01 мкм. Эффективность пылеулавливания мелких частиц меньше 50-80%, крупных больше — 90-99,9%.
Пылеуловители. Их два типа: сухие и мокрые. Сухим путем пыль улавливают пылеосадительные камеры, циклоны, вихревые циклоны, электрофильтры и др. Для очистки от пыли мокрым способом применяют пенные аппараты, скрубберы Вентури и др.
Предельно допустимая масса сжигаемого топлива (ПДТ) при выбросе продуктов сгорания в воздух рассчитывается по формуле:
Сухие пылеуловители. Пылеосадительные камеры. Это наиболее простейшие аппараты, использующие для осаждения пыли поле гравитации, а при установке перегородок — инерционное поле. Эффективность улавливания пыли размером более 25 мкм 50-80%. Для очистки горячих дымовых газов от пыли с размером более 20 мкм при температуре 450-600 о С используются жалюзные пылеотделители. В них отделение пыли от основного потока газа происходит за счет инерционных сил, возникающих при резком повороте очищаемого газового потока, когда он проходит через жалюзи решетки. Эффективность очистки достигает 80%.
На рисунках 4.1 и 4.2 показана схема циклона (греч. kyklon вращающийся) и скруббера (англ. scrub — скрести) Вентури соответственно для сухого и мокрого способов пылеулавливания.
Рис. 4.2. Скруббер Вентури для мокрой очистки газа от пыли:
1 — сопло Вентури; 2 — форсунки для ввода жидкости; 3 — каплеуловитель
Рис. 4.1. Циклон для сухой очистки воздуха от пыли:
1 — патрубок для ввода газа; 2 — корпус; 3 — выходная труба; 4 — бункер
Циклоны. Это основной вид аппаратов для улавливания пыли, которые для ее осаждения используют центробежное поле. В циклон газовый поток вводится через патрубок 1 по касательной к внутренней поверхности корпуса циклона 2 (рис. 4.1). Поток совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Частицы пыли под действием центробежной силы образуют на стенке циклона пылевой слой, который осыпается и попадает в бункер. Газовый поток, освободившись от пыли, образует вихрь и через трубу 3 покидает циклон. Бункер при его накоплении периодически разгружается от пыли.
Производительность циклона Q (0,5-50 тыс. м 3 /ч) определяется диаметром его цилиндрической части D: Q = (1/4)tcD 2 w, где w — скорость движения газа в циклоне, w = 4 м/с. От размера этого диаметра зависят остальные габариты циклона: высота (2-2,3)D, высота конуса (1,7-2)D, общая высота (4,2-4,6)D. Диаметр D выбирают в пределах от 20 до 300 см.
Ротационные пылеуловители Это аппараты центробежного действия типа вентиляторов особой конструкции. Их используют для очистки газов от пыли с размером частиц более 5 мкм. Они обладают большой компактностью. Более перспективной модификацией являются противопроточные ротационные пылеотделители. Их размеры в 3-4 раза меньше, чем у циклонов, а энергозатраты меньше на 20-40%. Однако сложность конструкции и процесса эксплуатации затрудняет их широкое распространение.
Электрофильтры. Они представляют собой устройства с набором трубчатых осадительных, положительно заряженных электродов (анодов), внутри которых по их осевому центру расположены тонкие стержни (струны) коронирующих, отрицательно заряженных электродов (катодов). Между этими электродами, представляющими цилиндрический электрический конденсатор, источником постоянного тока создается электрическое поле высокой напряженности, до 50-300 кВ/м. В этом сильном электрическом поле при столкновении заряженных частиц с молекулами происходит ударная ионизация газа. Однако до пробоя газа напряженность поля не повышают, т.е. создают условия для коронного разряда в газе. Аэрозольные частицы, поступающие в зону между катодом и анодом, адсорбируют образующие ионы, приобретают электрический заряд и движутся к электроду с противоположным зарядом. Так как площадь стержня (катода) значительно меньше площади трубки, плотность тока у катода будет значительно больше, чем у анода. Коронный разряд преимущественно локализуется у катода. Это приводит к значительно большему разряду катионов и образованию отрицательно заряженных аэрозольных частиц. Поэтому примеси в основном движутся к аноду и осаждаются на нем. Отсюда понятны названия: коронирующий и осадительный электроды.
При пропускании газа и примесей через электрофильтр скорость их потока обычно задают в пределах от 0,5 до 2 м/с. Скорость движения заряженных частиц к электродам зависит от их размера, заряда и напряженности электрического поля. При напряженности поля 150 кВ/м она составляет от 0,01 до 0,1 м/с для частиц с диаметром соответственно от 1 до 30 мкм. На электродах хорошо осаждаются и затем легко удаляются встряхиванием пыли с удельным сопротивлением от 10 до 10 Ом-см. При меньших его значениях частицы пыли легко разряжаются на электроде, перезаряжаются и возвращаются обратно в газовый поток. Пыли с удельным сопротивлением более 10 Ом-см медленно разряжаются на электродах, препятствуют осаждению новых частиц и улавливаются труднее всего. В этом случае используют увлажнение газа.
Электрофильтры используются для тонкой очистки газов от пыли и тумана. Сухие электрофильтры имеют производительность от 30 до 1000 м 3 /ч. Они способны очищать газы с эффективностью до 99,9% при содержании пыли до 60 г/м 3 и температуре газа до 250 о С.
Фильтры. Их конструкции различны. Однако у всех фильтров основным элементом является пористая перегородка — фильтроэлемент. По виду материала перегородки различают: зернистые, гибкие, полужесткие, жесткие фильтры.
Зернистые фильтры из гравия, кокса, песка используют для очистки газов от крупных фракций пыли, создаваемых дробилками, грохотами, мельницами и др. Эффективность очистки — до 99,9%.
Жесткие фильтроэлементы изготавливают из пористой керамики и пористых металлов. Они незаменимы при очистке от примесей горячих и, агрессивных газов.
Процесс фильтрования заключается в осаждении дисперсных частиц на поверхности пор фильтроэлемента. Осаждение происходит в результате эффекта касания, диффузионного, инерционного, гравитационного процесса, кулоновского взаимодействия заряженных частиц. Последнее характерно для нашедших в настоящее время широкое применение фильтров Петрянова из перхлорвиниловых волокон (ФПП). Такие ультратонкие волокна несут на своей поверхности заряды, что позволяет в начальной стадии фильтрования достигать очень высокой эффективности очистки газов от аэрозолей, до 99,99% при скорости фильтрации 0,01 м/с и диаметре частиц 0,34 мкм. Эти фильтры используют для очистки воздуха от радиоактивных аэрозолей. После нейтрализации заряда эффективность очистки снижается до 90%.
Если размер частиц больше размера пор, то наблюдается ситовой эффект с образованием слоя осадка. Этот эффект, а также постепенное закупоривание пор оседающими частицами увеличивают сопротивление фильтроэлемента и эффективность очистки, но снижает ее производительность. Поэтому фильтроэлементы периодически регенерируют.
Конструкции фильтров: рукавные, рулонные, рамочные.
Мокрые пылеуловители. Аппараты мокрой очистки газов характеризуются высокой эффективностью тонкой очистки мелких пылей (0,3-1 мкм), а также возможностью очистки от пыли горячих и взрывоопасных газов. Они работают, используя осаждение частиц пыли на поверхности капель или пленки жидкости. При этом действуют силы инерции, броуновского движения, диффузии, происходит взаимодействие заряженных частиц, конденсация, испарение и т.п. Важным фактором является смачиваемость частиц жидкостью.
По конструкции мокрые пылеуловители разделяют на скрубберы Вентури, форсуночные и центробежные скрубберы, на аппараты ударно-инерционные, барботажно-пенные и др.
Форсуночные и центробежные скрубберы эффективно улавливают частицы размером более 10-20 мкм. В них газовый поток направляется под углом на зеркало воды, выступающей над поверхностью шлама (рис. 4.3а). Крупные частицы оседают в воде, а мелкая пыль с газовым потоком поднимается вверх навстречу дождевому потоку, создаваемому форсунками 2а или пленке воды, подаваемой через сопла в центробежном скруббере.
4.3. Форсуночный скруббер (а), барботажно-пенный пылеуловитель (6), орошаемая противопроточная насадочная башня (в): 1 — корпус; 2а — форсунки; 26 — решетка; 3 — брызгоуловитель;
4 — вода; 5 — пена; 6 — насадка
Туманоуловители. Их используют для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей. Туманы улавливают волокнистыми фильтрами, на поверхности пор которых осаждаются капли и затем жидкость стекает под действием сил тяготения. В качестве материала применяется стекловолокно с диаметром волокон от 7 до 30 мкм или полимерные волокна (лав сан, полипропилен) диаметром от 12 до 40 мкм. В низкоскоростных туманоуловителях, со скоростью движения газа менее 0,15 м/с, преобладает механизм диффузионного осаждения капель, а в высокоскоростных (2-2,5 м/с) действуют инерционные силы.
Для низкоскоростного туманоуловителя используют трубчатые фильтрующие элементы. Их формируют (набирают) из волокнистых материалов в зазоре шириной 5-15 см между двумя сетчатыми цилиндрами, диаметры которых отличаются на 10-30 см. Эти элементы, в отличие от рукавных фильтров, с одного конца крепятся вертикально к отверстиям верхней перегородки цилиндрического аппарата, а нижние концы через трубчатые гидрозатворы погружаются в стаканы с конденсированной жидкостью. Туман, проходя с наружной стороны цилиндра во внутреннюю полость, задерживает капли. Образующаяся из них жидкость стекает в стакан. Эффективность очистки частиц размером менее 3 мкм 99,9%.
Высокоскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки в 90-98%. Для очистки воздуха ванн хромирования от тумана и брызг хромовой и серной кислоты с температурой до 90 о С разработана конструкция фильтра с волокнами из полипропилена: ФВГ-Т. Его производительность 3 500-80 000 м 3 /ч, эффективность очистки — 96-99%.
МЕТОДЫ ОЧИСТКИ ВОЗДУХА ОТ ПЫЛИ
Для очистки воздуха от пыли применяют пылеуловители и фильтры. К фильтрам относятся устройства, в которых отделение пылевых частиц от воздуха производится путем фильтрации через пористые материалы. Аппараты, основанные на иных принципах пылеотделения, принято называть пылеуловителями.
В зависимости от природы сил, действующих на взвешенные в газе пылевые частицы для их отделения от газового потока, используют следующие типы пылеулавливающих аппаратов:
сухие механические пылеуловители (взвешенные частицы отделяются от газа при помощи внешней механической силы);
мокрые пылеуловители (взвешенные частицы отделяются от газа путем промывки его жидкостью, захватывающей эти частицы);
электрические пылеуловители (частицы пыли отделяются от газового потока под действием электрических сил);
фильтры (пористые перегородки или слои материала, задерживающие пылевые частицы при пропускании через них запыленного воздуха);
комбинированные пылеуловители (используются одновременно различные принципы очистки).
По функциональному назначению пылеулавливающее оборудование подразделяют на два вида: 1) для очистки приточного воздуха в системах вентиляции и кондиционирования; 2) для очистки воздуха и газов, выбрасываемых в атмосферу системами промышленной вентиляции.
Основными технико-экономическими показателями, характеризующими промышленную эксплуатацию пылеуловителей и фильтров, являются:
производительность (или пропускная способность аппарата), определяемая объемом воздуха, который может быть очищен от пыли за единицу времени (м 3 /ч, м 3 /с);
аэродинамическое сопротивление аппарата прохождению через него очищаемого воздуха (Па). Оно определяется разностью полных давлений на входе в аппарат и выходе из него, т. е. р = рвх — рвых;
общий коэффициент очистки или общая эффективность пылеулавливания, определяемая отношением массы пыли, уловленной аппаратом Gул, к массе пыли, поступившей в него с загрязненным воздухом GBX и выражаемый в относительных единицах или в %:
фракционный коэффициент очистки, т. е. эффективность пылеулавливания аппарата по отношению к различным по крупности фракциям (в долях единицы или в %)
η = [Фвх – Фвых(1 – η)]/Фвх
где Фвх, Фвых — содержание фракции пыли в воздухе соответственно на входе и выходе из пылеуловителя, %.
Стоимость очистки воздуха (руб. на 1000 м 3 очищаемого воздуха).
Наиболее простыми по устройству и эксплуатации аппаратами являются пылеосадительные камеры, в которых отделение частиц пыли от воздуха происходит под действием силы тяжести при прохождении воздуха через камеры. Эти устройства применяют для грубой очистки, их эффективность пылеулавливния составляет 50. 60 %. Скорость движения воздуха в камере выбирается из условия обеспечения ламинарного движения и обычно составляет 0,2. 0,8 м/с. Аэродинамическое сопротивление камер невысоко и равно 80. 100 Па. С целью повышения эффективности пылеулавливания камер они иногда разделяются по высоте полками, которые могут периодически встряхиваться для очистки от оседающей пыли. Для этой же цели применяют пылеосадительные камеры лабиринтного типа.
Центробежные пылеотделители — циклоны — находят более широкое применение, так как при сравнительно простой конструкции обеспечивают высокую степень обеспыливания воздуха (80. 90%). Наиболее известные типы отечественных циклонов приведены на рис. 7.1.
Циклон состоит из цилиндрического корпуса, к которому тангенциально подведен входной патрубок; нижней конической части и выхлопного патрубка, размещаемого внутри корпуса соосно с ним. Входя в циклон со скоростью 1&. 20 м/с, запыленный воздух приобретает вращательное движение и опускается вниз. При этом частицы пыли под действием сил инерции отбрасываются к стенкам аппарата и, скользя по ним вниз, попадают в бункер. Очищенный поток воздуха поворачивает вверх и через выхлопную трубу выходит из циклона.
Эффективность пылеулавливания возрастает с увеличением скорости входа воздуха в циклон, однако при слишком большой скорости возрастает турбулизация воздушной среды и эффективность циклона падает. Максимальную скорость воздуха принимают обычно не более 20 м/с. На эффективность этих аппаратов влияет и их диаметр: с его увеличением эффективность падает, поэтому диаметр циклонов принимается не более 1 м.
Гидравлическое сопротивление циклонов колеблется в пределах 500. 1100 Па. Оно зависит от конструкции аппарата и скорости воздуха на входе в него.
Рис. 7.1. Схемы циклонов основных типов:
а — НИИОГАЗ ЦН-15; б — СИОТ; в — ВЦНИИОТ; г — Гипродрев;
1 — входной патрубок; 2—выхлопная труба; 3—цилиндрический корпус; 4—коническая часть; 5—бункер; 6—улитка на выходе; 7—отверстие выхлопного патрубка; 8—коническая вставка; 9—перегородки
Конструкции современных циклонов довольно разнообразны, что объясняется многообразием условий их рационального применения. Наибольшее распространение получили циклоны типа НИИОГАЗ (несколько модификаций), СИОТ, ВЦНИИОТ, ЛИОТ, Гипродрева (см. рис. 7.1). Они различаются конструктивным оформлением, эффективностью пылезадержания и гидравлическим сопротивлением. Каждый циклон имеет свою рациональную область применения.
Циклон НИИОГАЗ отличается удлиненной конической частью и имеет малое гидравлическое сопротивление. Применяется он для улавливания неслипающихся и неволокнистых пылей.
Циклон СИОТ имеет корпус в виде конуса без цилиндрической части с входной трубой треугольного поперечного сечения. Используется он в тех случаях, когда имеются ограничения габаритов по высоте.
Циклон ВЦНИИОТ рекомендуется применять при улавливании абразивных пылей, так как он отличается малой изнашиваемостью стенок благодаря наличию обратно расположенного конуса внизу аппарата. Гидравлическое сопротивление его несколько выше, чем у циклонов других типов. Циклон ВЦНИИОТ можно использовать для улавливания волокнистых пылей (нижний внутренний конус в этом случае снимается).
Циклон ЛИОТ имеет развитую цилиндрическую часть и применяется для улавливания сухой неслипающейся пыли.
Циклон Гипродрева отличается бочкообразной формой, имеет малое гидравлическое сопротивление и используется в основном для улавливания отходов деревообработки.
Окончательный выбор того или иного типа циклона должен определяться по технико-экономическим показателям. В тех случаях, когда требуется очищать большие объемы воздуха, применяют групповые циклоны. В них аппараты подсоединяются параллельно входными патрубками к общему трубопроводу и устанавливаются на один бункер больших размеров. Необходимым условием эффективной работы циклонов в этом случае является исключение возможности перетекания воздуха из одного циклона в другой.
Рукавные фильтры для улавливания сухих неслипающихся пылей нашли широкое применение в промышленности (рис. 7.2). Основными рабочими элементами этих устройств являются матерчатые рукава, подвешиваемые к встряхивающему устройству и размещаемые в герметичном металлическом корпусе. Нижние открытые концы рукавов соединены с бункером. Воздух, проходя через ткань рукавов, оставляет на их поверхности пыль и удаляется из корпуса фильтра вентилятором. Накапливаясь на поверхности ткани в виде слоя, пыль сама становится фильтрующей средой и увеличивает эффективность пылезадержания фильтра. Очистка ткани рукавов от осевшей пыли производится путем их встряхивания, для чего устанавливается автоматически действующий встряхивающий меха низм. Во многих типах фильтров встряхивание рукавов сочетается с обратной их продувкой с целью лучшей очистки от пыли. Фильтры выполняются многосекционными. При отключении одной из секций для очистки рукавов остальные продолжают работать. Фильтры бывают всасывающего и напорного типов.
Рис. 7.2. Схема рукавного фильтра:
1 — входной патрубок; 2— рукав; 3— подвеска рукавов; 4— встряхивающий механизм;
5— выходной патрубок; 6 — бункер
Эффективность пылезадержания рукавных фильтров составляет 90. 99 %. Воздушная нагрузка на ткань принимается в пределах 50. 80 м 3 /(м 2 ·ч). Гидравлическое сопротивление фильтра в зависимости от степени запыления рукавов колеблется в пределах 1. 2.5 кПа.
В последние годы разработаны фильтры, в которых рукава выполнены из стеклоткани или пористых керамических материалов. Очистка фильтрующих элементов в них производится сжатым воздухом. Такие фильтры можно применять для очистки высокотемпературных газов, отсасываемых от технологического оборудования. Из выпускаемых промышленностью рукавных фильтров наибольшее распространение получили фильтры типов ФВК, ФВВ, ФРМ, ФТНС и др.
Электрические фильтры (рис. 7.3) находят широкое применение на предприятиях строительной индустрии для очистки воздуха и промышленных газов от пыли. В этих аппаратах отделение пылевых частиц от воздуха производится под воздействием статического электрического поля высокой напряженности. В металлическом корпусе, стенки которых заземлены и являются осадительными электродами, размещены коронирующие электроды, соединенные с источником постоянного тока. Напряжение выпрямленного тока составляет 30. 100 кВ.
Вокруг отрицательно заряженных электродов образуется электрическое поле. Проходящий через электрофильтр запыленный газ ионизируется, вследствие чего приобретают отрицательные заряды и пылевые частицы. Последние начинают перемещаться к стенкам фильтра, и, оседая на них, образуют плотный слой. Очистка осадительных электродов производится путем их остукивания или вибрации, а иногда путем смыва водой.
Рис. 7.3. Схема электрофильтра:
1 — входной патрубок; 2— корпус электрофильтра (осадительный электрод); 3—коронирующий электрод;
4— изоляторы; 5— выходной патрубок; 6— высоковольтный выпрямитель тока; 7— бункер
Для различных условий применения промышленностью выпускаются разные типы электрофильтров: УГ, ЭГА, УТТ, ОГП, УБ, УВВ, ПГ, ДМ и др.
Пылеуловители мокрого типа являются аппаратами глубокой очистки и отличаются высокой эффективностью пылеулавливания. Их применение целесообразно в том случае, когда улавливаемая пыль хорошо смачивается водой, не цементируется и не образует твердых, трудно разрушаемых отложений.
Из этого класса аппаратов наиболее часто применяют циклон с водяной пленкой ЛИОТ (рис. 7.4). Он имеет вертикальный цилиндрический корпус, в нижнюю часть которого тангенциально подводится очищаемый воздух. Последний закручивается и, вращаясь, поднимается в верхнюю часть аппарата, откуда отводится в атмосферу через выхлопной патрубок.
Рис. 7.4. Циклон с водяной пленкой:
1 — входной патрубок; 2 — корпус; 3 — выходной патрубок; 4 — устройство для подачи воды
При вращении потока из него под действием центробежных сил выделяются пылевые частицы, которые удаляются со стенок аппарата стекающей сверху водой. Последняя подается на стенки аппарата через водоподающее кольцо и несколько тангенциально расположенных трубок и стекает по стенкам аппарата в виде сплошной водяной пленки. Образующийся шлам собирается в бункере.
Эффективность пылеулавливания циклонов с водяной пленкой составляет 99,0. 99,5 %, потери давления в аппарате равны 400. 800 Па. При очистке от пыли агрессивных газов, разрушающих металлические стенки аппарата, последние с внутренней стороны армируются кислотостойкими покрытиями.
Высокими эксплуатационными показателями отличаются также пенные пылеуловители (рис. 7.5). Аппараты этого типа имеют цилиндрический металлический корпус, внутри которого горизонтально размещена решетка. Вода подается на решетку, через которую снизу пропускается очищаемый воздух. При этом на решетке образуется слой пены, высота которого зависит от высоты сливной перегородки (порога). Обычно она составляет 80. 100 мм. С целью снижения капельного уноса влаги в верхней части аппарата размещается каплеуловитель, выполненный в виде решетки с лабиринтными каналами.
Рис. 7.5. Пенный пылеуловитель:
1 — приемная коробка; 2— корпус; 3— решетка; 4— сливная перегородка (порог); 5—сливная коробка
1. Назовите основные источники и свойства пылей, выделяющихся на строительных площадках. 2. Каковы методы контроля запыленности воздуха? 3. Перечислите общие и индивидуальные средства защиты работающих от пыли. 4. Назовите основные виды пылеуловителей и фильтров, применяемых для очистки воздуха. 5. Каковы технико-экономические показатели, применяемые при оценке пылеуловителей и фильтров? 6. Объясните принцип действия и укажите области применения пылеосадительных камер и циклонов. 7. Как устроены и работают рукавные фильтры? 8. Объясните принцип действия электрических фильтров. 9. Как устроены пылеуловители мокрого типа и в каких случаях они применяются? 10. Объясните принцип действия пенных пылеуловителей.
Воздухоочистка на предприятии и выбор пылеочистного устройства
Многие производственные технологические процессы приводят к выбросу в воздух мелких твердых частиц или пыли. Пыль образуется в процессе измельчения, шлифовки, полировки, истирания, а также при транспортировке или пересыпании различных материалов.
Зачем нужна очистка от пыли
Воздух, удаляемый местными вентиляционными установками, запыленный или загрязненный ядовитыми газами или парами, необходимо очищать перед выпуском его в атмосферу. Способ очистки удаляемого воздуха от загрязнений, высота выброса и допустимые концентрации вредных веществ в нем должны соответствовать действующим нормативным документам и стандартам. Если очистка воздуха от ядовитых газов и паров технически невыполнима, то неочищенный воздух необходимо выбрасывать в высокие слои атмосферы.
Сегодня в нашей стране на многих действующих производствах существующие системы аспирации (пылеудаления) и вентиляции не справляются с задачами пылеудаления или делают это с недостаточным качеством. В основном, это происходит:
Чтобы довести содержание пыли в удаляемом из производственных помещений воздухе до уровня, соответствующего действующим санитарным нормам, используются пылеочистные или газоочистные устройства.
Выбор пылеочистного устройства
Пылеочистное устройство выбирают в зависимости от ряда параметров, к числу которых относят: степень требуемой очистки воздуха, величину пылинок, свойства частиц пыли (пыль сухая, волокнистая, липкая, гигроскопичная и т.д.), начальное пылесодержание, а также температуру очищаемого воздуха и ценность частиц пыли.
Пылеочистные устройства делятся на:
Дмитрий Захаров, Генеральный директор «Экофильтр»
«Рукавные фильтры не очищают от газовой составляющей, только от пыли.
Рукавные фильтры работают с температурой не более 250°С на входе в фильтр. При более высоких температурах требуется охлаждение газов или применение электрофильтров, которые имеют более низкую эффективность очистки по сравнению с рукавными (в 2 и более раз)».
Чтобы эффективно удалить пыль, следует знать ее классификацию. По размеру частиц (дисперсности) бывает:
Устройства грубой очистки воздуха применяют чаще всего на стадии предварительной очистки при многоступенчатой очистке воздуха. Они задерживают главным образом частицы крупной пыли.
Устройства средней степени очистки воздуха находят свое использование в тех случаях, когда воздух выбрасывается в атмосферу, при этом остаточное содержание пыли в нем должно быть не более 150 мг/куб. м.
Устройства тонкой степени очистки воздуха применяются для обеспечения остаточного пылесодержания очищенного воздуха на уровне не более 2 мг/куб. м. Они могут задержать пылевые частицы величиной до 10 мкм. Такие устройства следует использовать как для очистки приточного, так и рециркуляционного воздуха, а также для улавливания ценной пыли (например, частиц цветных металлов, муки, цемента и т.п.).
Виды пылеочистных устройств
По принципу действия различают следующие виды пылеочистных устройств:
Одним из самых эффективных мокрых пылеуловителей является скруббер Вентури, в котором турбулентный поток загрязненного газа пропускают через воду. При этом происходит захват каплями воды частиц пыли, коагуляции (слипание в более крупные комья) этих частиц с последующим осаждением в каплеуловителе инерционного типа.
В фильтрующих устройствах улавливание частиц пыли происходит при прохождении газа через пористые материалы. Различают тканевые (к ним относятся каркасные и рукавные фильтры), волокнистые (ячейковые, панельные, рукавные) и зернистые (ячейковые, барабанные) фильтры.
В мокрых электрофильтрах вода подается в виде пленки на осадительные электроды. Применение пылеулавливающих устройств мокрой очистки ограничивается теми случаями, когда допустимо увлажнение очищаемого газа.
Небольшая подсказка. Для эффективной очистки от пыли с размерами частиц до 4 мкм применяют главным образом рукавные фильтры и электрофильтры. Если размеры частиц лежат в диапазоне 4-8 мкм, то для очистки лучше применять циклоны с мокрой пленкой или скрубберы. Циклоны чаще всего используются для очистки от пыли с размерами частиц более 8 мкм.
Популярные модели
Расчет степени очистки воздуха пылеочистным устройством
Существует формула, по которой можно рассчитать эффективность устройств пылеочистки. Эффективность характеризует, насколько устройство способно очистить воздух и измеряется в процентах:
При многоступенчатой очистке воздуха используют специальную формулу, в которой учитывается эффективность очистки на каждой ступени. К примеру, для двухступенчатой очистки эта формула такова:
Чтобы сравнить эффективность разных пылеочистных устройств, пользуются такой формулой:
Пусть N1 = 90%, а N2 = 95%. Воспользуемся формулой и получим, что эффективность второго устройства в 2 раза превышает степень очистки первого. А не на 5%, как думают некоторые.
На заметку
«Для эффективной очистки от пыли с размерами частиц до 4 мкм применяют главным образом рукавные фильтры и электрофильтры. Если размеры частиц лежат в диапазоне 4-8 мкм, то для очистки лучше применять циклоны с мокрой пленкой или скрубберы. Циклоны чаще всего используются для очистки от пыли с размерами частиц более 8 мкм».
Другие значимые характеристики пылеочистных устройств
Помимо эффективности очистки, при выборе пылеочистных устройств нужно учитывать и другие их характеристики. К их числу относят:
Последние три показателя характеризуют главным образом фильтрующие устройства. Скорость фильтрации (ее еще называют нагрузкой по газу) рассчитывается, как отношение объемного расхода очищаемого газа к площади фильтрующей поверхности. Аэродинамическое сопротивление определяется как разность давлений газа на входе и на выходе в очистное устройство. А пылеёмкость равна массе пыли, которая накапливается на фильтре в промежутке между очередными процессами регенерации. Регенерацию фильтра следует проводить, когда аэродинамическое сопротивление очистного устройства возрастает в 2-3 раза от начального уровня.