какой металл проявляет переменные степени окисления
Переходные металлы (элементы).
Переходные металлы (элементы) располагаются в побочных подгруппах Периодической системы Д.И. Менделеева. Их подразделяют на d-элементы и f-элементы. f-элементы – это лантаноиды и актиноиды.
Название «переходные» связано с тем, что в периодах переходные элементы вклиниваются между s- и р-элементами.
В отличие от s- и p-элементов, у которых заполняются внешние оболочки (соответственно ns- и np-оболочки), у переходных металлов заполняются внутренние (n — 1) d-оболочки (d-элементы) или (n — 2) f-оболочки (f-элементы).
Все переходные элементы имеют следующие общие свойства:
Формула соединения
Характер соединения
Основание средней силы
Очень сильная кислота
Таблица переходных металлов.
При образовании соединений атомы металлов могут использовать не только валентные s- и p-электроны, но и d-электроны. Поэтому для d-элементов гораздо более характерна переменная валентность, чем для элементов главных подгрупп. Благодаря этому свойству переходные металлы часто образуют комплексные соединения.
Все переходные элементы металлы. Поэтому в своих соединениях они проявляют положительные степени окисления. Большинство из них имеет характерный металлический блеск. По сравнению с s-металлами их прочность в целом значительно выше. В частности, для них характерны свойства: высокий предел прочности на разрыв; тягучесть; ковкость (их можно расплющить ударами в листы).
Есть три примечательных элемента из семейства переходных металлов. Эти элементы — железо, кобальт и никель, и они являются единственными элементами которые способны создавать магнитное поле.
Переходные элементы, кроме Fe и Ti, мало распространены в земной коре.
Переходные металлы
Содержание:
Переходные металлы — элементы побочных подгрупп Периодической системы химических элементов Д. И. Менделеева, в атомах которых появляются электроны на d- и f-орбиталях.
На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.
Все d-элементы расположены в побочных подгруппах периодической системы элементов и являются переходными.
Находясь только в больших периодах (IV, V, VI), d-элементы образуют «вставные декады» (по 10 элементов) между s— и d-элементами, поэтому имеют общее название — переходные металлы.
В атомах d-элементов содержится от 1 до 10 электронов на d-подуровне предвнешнего электронного слоя и 2 (или 1 в случае проскока) на s-подуровне внешнего электронного слоя. Общая формула электронной конфигурации валентных подуровней в атомах где n— номер периода.
В отличие от щелочных и щелочноземельных металлов, большинство d-металлов имеют переменную валентность и переменную степень окисления. Это объясняется тем, что валентными в атомах d-элементов являются не только s-электроны внешнего слоя, но и все или некоторые d-электроны предвнешнего слоя, d-элементы образуют три переходных ряда — в IV, V и VI периодах соответственно. Первый ряд включает 10 элементов: от скандия до цинка. Он характеризуется внутренней застройкой 3d-орбиталей (табл. 29).
Элемент | Символ | Атомный номер | Электронная конфигурация |
Скандий | Sc | 21 | |
Титан | Ti | 22 | |
Ванадий | V | 23 | |
Хром | Cr | 24 | |
Марганец | Mn | 25 | |
Железо | Fe | 26 | |
Кобальт | Co | 27 | |
Никель | Ni | 28 | |
Медь | Cu | 29 | |
Цинк | Zn | 30 |
Как следует из таблицы, хром и медь имеют всего по одному электрону. Согласно закономерностям заполнения энергетических уровней и подуровней у атомов хрома и меди на четвертом энергетическом уровне должно быть два электрона. Однако один из двух электронов переходит на третий энергетический уровень, на незаполненную d-орбиталь («провал электрона»). Медь в соединениях проявляет степени окисления + 1, +2, хром проявляет степени окисления +2, +3, +6. Для d-металлов III—VII групп высшая валентность и высшая степень окисления равны номеру группы, т. е. суммарному числу на (n — 1)d— и ns-подуровнях, например у d-элементов четвертого периода (табл. 30).
№ группы | III | IV | V | VI | VII |
Элемент | Sc | Ti | V | Cr | Mn |
Электрон. конфигурация | |||||
Высшая валентность | III | IV | V | VI | VII |
Высшая степень окисления | +8 | +4 | +5 | +6 | +7 |
d-металлы II группы, атомы которых имеют завершенную структуру d-подуровня проявляют в своих соединениях постоянную валентность II и постоянную степень окисления +2. Например, в атоме цинка предпоследний d-подуровень полностью завершен, поэтому цинк в соединениях проявляет только степень окисления +2.
В периодах с увеличением заряда ядра металлические свойства изменяются более медленно по сравнению со свойствами s— и p-элементов. В побочных подгруппах сверху вниз восстановительные свойства d-элементов уменьшаются. В свободном состоянии d-металлы (как и вообще все металлы) являются восстановителями. Восстановительная активность различных d-металлов изменяется в широких пределах: среди них есть металлы средней активности, находящиеся в ряду напряжений до водорода: (Fe, Cr, Zn, Mil и др.); малоактивные металлы (Сu, Hg и др.) и благородные металлы (Аu, Pt), располагающиеся в ряду напряжений после водорода.
Соединения d-элементов могут выполнять как восстановительные, так и окислительные функции. Соединения с высокими степенями окисления являются окислителями, а соединения с невысокими степенями окисления — восстановителями, например:
— восстановители.
— сильные окислители.
Кислотно-основные свойства оксидов и гидроксидов d-элементов, а также окислительно-восстановительные свойства их соединений зависят от степени окисления металла. Как следует из таблицы при увеличении степени окисления металла основной характер оксидов и гидроксидов ослабляется, а кислотный характер усиливается (табл. 31).
Например, СrО и Сг(ОН)2 — это основные оксиды и гидроксиды. Сг2O3 и Сг(ОН)3 — амфотерные, СrO3 и Н2СrО4, Н2Сг2О2 — кислотные.
d-металлы по сравнению с другими металлами характеризуются более большей твердостью, плотностью, высокой температурами плавления и кипения, d-металлы хорошие проводники электрического тока, особенно те из них, в атомах которых имеется только один внешний s-электрон. Так, медь, серебро и золото, обладающие конфигурацией d 10 s 1
Большинство соединений переходных металлов окрашены. Для d-элементов характерно образование комплексных соединений.
Все d-элементы расположены в побочных подгруппах периодической системы элементов и являются металлами. В каждом большом периоде d-элементы располагаются между s— и p-элементами. В отличие от щелочных и щелочноземельных металлов, большинство d-металлов имеют переменную валентность и переменную степень окисления. В свободном состоянии d-металлы (как и вообще все металлы) являются восстановителями. Соединения d-элементов могут проявлять как восстановительные, так и окислительные функции. Соединения с высокими степенями окисления являются окислителями, а соединения с невысокими степенями окисления — восстановителями. При увеличении степени окисления металла основной характер оксидов и гидроксидов ослабляется, а кислотный характер усиливается.
Комплексные соединения
Мир веществ многообразен, и мы встречались с группой веществ, которые принадлежат к комплексным соединениям. Данными веществами стали заниматься с XIX века, но понять их строение с позиций существовавших представлений о валентности было трудно. В 1893 году швейцарским химиком-неоргаником Альфредом Вернером была сформулирована теория, позволившая понять строение и некоторые свойства комплексных соединений, которую назвали координационной теорией, поэтому комплексные соединения часто называют координационными соединениями. Соединения, в состав которых входят сложные ионы, существующие как в кристалле, так и в растворе, называются комплексными, или координационными.
Комплексные соединения образуются в результате взаимодействия между собой солей, кислот и оснований, например:
Строение комплексных соединений. Комплексные соединения образованы двумя составляющими: внутренней координационной сферой и внешней координационной сферой.
В состав внутренней сферы одного соединения могут входить различные лиганды, например, в и Cl2, являются лигандами. Число лигандов, располагающихся вокруг комплексообразователя, определяет координационное число центрального атома. Так, в соединении
координационное число серебра равно двум, а кобальта в
— шести. Координационное число принимает значения от 2 до 12, но чаще всего оно равно 2, 4 или 6. Внешняя сфера может быть образована как катионами, так и анионами. Заряды внешней и внутренней сфер противоположны. Рассмотрим несколько примеров: 1. Структура комплекса
— гексацианоферрата (II) калия.
Железо (+2) является центральным ионом. Ионы CN выполняют роль лигандов. Железо в комплексе с цианогруппами образует внутреннюю координационную сферу. Ионы калия образуют внешнюю координационную сферу. Положительный заряд внешней сферы компенсирует отрицательный заряд внутренней сферы. Координационное число комплексообразователя (Fe), определяемое числом координационных связей, равно 6.
2. Структура комплекса — хлорид гексаамминкобальта (III), Со (III) является комплексообразователем. Молекулы NH3 выполняют роль лигандов. Кобальт в комплексе с NH3 образует внутреннюю сферу. Ионы хлора образуют внешнюю координационную сферу. Координационное число комплексообразователя (Со) равно 6.
3. Структура комплекса — дихлородиамминплатина (II). Pt(II) является комплексообразователем. Молекулы NH3 и ионы Сl выполняют роль лигандов- Платина в комплексе с NH3 иСl образует внутреннюю координационную сферу. Заряд внутренней сферы равен 0. Внешняя координационная сфера отсутствует. Координационное число комплексообразователя Pt равно 4. Как видим, комплексные соединения чрезвычайно разнообразны по составу и строению.
Классификация комплексных соединений Большое многообразие комплексных соединений и их свойств не позволяет создать единую классификацию. Однако можно группировать вещества по некоторым отдельным признакам.
1. По составу: например, соли основания
кислоты
в) аммиакаты — это комплексные катионы, в которых лигандами являются молекулы NH3. Комплексообразователями являются d-элементы. Например:
г) ацидокомплексы — это комплексные анионы, в которых лигандами являются анионы неорганических и органических кислот. Например:
3. По заряду внутренней сферы а) комплексный катион, например,
б) комплексный анион, например,
Химические свойства
1. В растворе комплексные соединения ведут себя как сильные электролиты, т. е. полностью диссоциируют на катионы и анионы:
а)
б)
2. При действии сильных кислот происходит разрушение гидроксокомплексов, например:
а) при недостатке кислоты:
б) при избытке кислоты:
3. Нагревание (термолиз) всех аммиакатов приводит к их разложению, например:
Значение и применение комплексных соединений
Комплексные соединения имеют большое значение в природе. Достаточно сказать, что почти все ферменты, многие гормоны, лекарства, биологически активные вещества представляют собой комплексные соединения. Например, гемоглобин крови является комплексным соединением железа, а хлорофилл — комплексным соединением магния, витамин В12 — комплексным соединением кобальта. Образование комплексных соединений используют в химической технологии для извлечения золота, металлов платиновой группы и др. Эти соединения широко применяют в аналитической химии в качестве индикаторов.
Соединения, в состав которых входят сложные ионы, существующие как в кристалле, так и в растворе, называются комплексными, или координационными. Комплексные соединения образованы двумя составляющими: внутренней координационной сферой и внешней координационной сферой. Комплексообразователями являются металлы. Окружающие комплексообразователя ионы, атомы или молекулы, называются лигандами. Число лигандов, располагающихся вокруг комплексообразователя, определяет координационное число центрального атома. Координационное число принимает значения от 2 до 12, но чаще всего оно равно 2, 4 и 6.
Биологическая роль переходных металлов
Хром — постоянная составная часть растительных и животных организмов. Биологическая активность хрома объясняется главным образом способностью ионов Сr 3- образовывать комплексные соединения. Например, ионы Сr 3- участвуют в стабилизации структуры нуклеиновых кислот. Недостаток хрома замедляет рост живых организмов, нарушает углеводный обмен вызывает болезнь глаз, симптомы диабета. Соединения хрома ядовиты и в медицине не применяются.
Марганец. Марганец — микроэлемент. Биогенная функция ионов Мn 2+ состоит в регуляции активности ферментов. Поэтому ионы Мn 2+ обладают широким спектром биологических эффектов: оказывают влияние на кроветворение, минеральный обмен, рост, размножение и т. д. Кроме того, ионы Мn 2+ стабилизируют структуру нуклеиновых кислот. В медицине используется перманганат калия КМnO4. Этот антисептик применяется в водных растворах для промывания ран, полоскания горла и т. д.
где Нb — гемоглобин. Образующийся комплекс карбоксигемоглобин (НbСО) не способен присоединять к себе кислород. Таким образом,связываясь с гемоглобином угарный газ препятствует снабжению организма кислородом. В результате кровь утрачивает способность переносить и доставлять тканям кислород и развивается кислородное голодание или гипоксия. В первую очередь страдает головной мозг, но возможно поражение и других органов — в зависимости от общего состояния здоровья.
Такое состояние опасно для жизни и при тяжелом отравлении может быть смертельным. Основная проблема состоит в том, что угарный газ не имеет ни цвета, ни вкуса, ни запаха, не вызывает вообще никаких ощущений.
К первым симптомам отравления угарным газом относятся: тошнота, рвота, головокружение, частый пульс, дезориентация. Возможно развитие обморока, эйфории, спутанности сознания.
• Если начинается озноб, падает температура — укутайте потеплее, напоите сладким чаем (если человек в сознании, разумеется).
• Устройте поудобнее (и желательно — на свежем воздухе или, хотя бы, у открытого окна), чтобы облегчить дыхание.
• Потерявшего сознание уложите на бок и следите, чтобы его голова не запрокидывалась, особенно если вдруг возникнет рвота, дайте понюхать ватку, смоченную нашатырным спиртом, для того, чтобы привести человека в сознание; При необходимости сделать пострадавшему непрямой массаж сердца и провести искусственное дыхание.
• Чем раньше пострадавшему будет оказана медицинская помощь, тем больше шансов на его выздоровление.
Учтите: от отравления угарным газом существует противоядие. Этот препарат называется ацизол, выпускается в виде капсул и в виде раствора в ампулах (для внутримышечных инъекций).
Для того, чтобы предотвратить отравление угарным газом нужно соблюдать несложные правила:
• не ночевать в гараже;
• не использовать газовую горелку или керосиновую лампу для отопления закрытого помещения;
• не оставлять в гараже машину с включенным двигателем;
• не спать в машине с включенным двигателем.
Услуги по химии:
Лекции по химии:
Лекции по неорганической химии:
Лекции по органической химии:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Валентность и степень окисления
Валентность
Определяют валентность по числу связей, которые один атом образует с другими. Для примера рассмотрим две молекулы
Для определения валентности нужно хорошо представлять графические формулы веществ. В этой статье вы увидите множество формул. Сообщаю вам также о химических элементах с постоянной валентностью, знать которые весьма полезно.
В электронной теории считается, что валентность связи определяется числом неспаренных (валентных) электронов в основном или возбужденном состоянии. Мы касались с вами темы валентных электронов и возбужденного состояния атома. На примере фосфора объединим эти две темы для полного понимания.
Подавляющее большинство химических элементов обладает непостоянным значением валентности. Переменная валентность характерна для меди, железа, фосфора, хрома, серы.
Степень окисления
Численно степень окисления равна условному заряду, который можно приписать атому, руководствуясь предположением, что все электроны, образующие связи, перешли к более электроотрицательному элементу.
Зная изменения электроотрицательности в периодах и группах периодической таблицы Д.И. Менделеева, можно сделать вывод о том какой элемент принимает «+», а какой минус. Помогают в этом вопросе и элементы с постоянной степенью окисления.
Самостоятельно определите степени окисления атомов в следующих веществах: RbOH, NaCl, BaO, NaClO3, SO2Cl2, KMnO4, Li2SO3, O2, NaH2PO4. Ниже вы найдете решение этой задачи.
Сравнивайте значение электроотрицательности по таблице Менделеева, и, конечно, пользуйтесь интуицией 🙂 Однако по мере изучения химии, точное знание степеней окисления должно заменить даже самую развитую интуицию 😉
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Блиц-опрос по теме Валентность и степень окисления