какой металл лучше всего проводит электрический ток
Руководство по материалам электротехники для всех. Часть 1
Привет гиктаймс! Я решил опубликовать по частям свое руководство по материалам, используемым не только в электротехнике, но и вообще в технике, в том числе самодельщиками. С описанием, примерами применения, заметками по работе. Руководство написано максимально просто, и будет понятно всем, от школьника до пенсионера.
В этой части начинаем разбирать проводники — Серебро, Медь, Алюминий.
Добро пожаловать под кат (ТРАФИК)
Введение, которое обычно никто не читает
Ковыряясь в поисках ответов на свои вопросы в разных учебниках по материаловедению, методичках, научпоп книгах я ужасался, насколько академический стиль изложения возводит стену между желающим узнать и знаниями. Насколько стремление авторов обойти острые грани, тёмные места превращает учебники в однородную бескрайнюю пустыню скуки и отчаяния. При этом запредельный уровень абстракции делает крайне сложным для неофита использование полученных знаний в практике. Поэтому я решил сделать свое руководство, с блекджеком и блудными девицами.
Это руководство — живое, по мере получения новых материалов, уточнений, комментариев от вас, дорогие читатели оно будет дополняться, изменяться, становиться лучше. Всегда самая свежая версия руководства лежит у меня на сайте в бложике Я обеими руками поддерживаю движение Open Source и Open Hardware, считаю, что обмен знаниями должен быть свободным, это принесет пользу для всех, поэтому пособие распространяется под лицензией Creative Commons 3.0 BY-NC-SA, что значит, вы можете делать с ним что угодно: выкладывать, распространять, модифицировать, соблюдая только три ограничения:
Проводники:
*Серебро
*Медь
*Алюминий
*Железо
*Золото
*Никель
*Вольфрам
*Ртуть
Так себе проводники:
*Углерод
*Нихромы
*Сплавы для изготовления термостабильных сопротивлений
*Припои
*Олово
*Легкоплавкие припои
Прочие проводники
*Термопарные сплавы
*Оксид Индия-Олова
Диэлектрики (Совсем не проводники):
*Неорганические диэлектрики
**Фарфор
**Стекло
**Слюда
**Алюмооксидные керамики
**Асбест
**Вода
*Органические диэлектрики полусинтетические
**Бумага, картон
**Шёлк
**Воск, парафин
**Трансформаторное масло
**Фанера, ДСП
*Органические диэлектрики синтетические
**Материалы на базе фенол-формальдегидных смол
**Карболит (бакелит)
**Гетинакс
**Текстолит
**Стеклотекстолит
**Лакоткань
**Резина
**Эбонит
**Полиэтилен
**Полипропилен
**Полистирол, АБС-пластик
**Фторопласт-4 (политетрафторэтилен PTFE)
**Поливинилхлорид — ПВХ
**Полиэтилентерефталат (ПЭТФ)
**Силиконы
**Полиимид
**Полиамиды
**Полиметилметакрилат — ПММА
**Поликарбонат
*График истории промышленного применения полимеров
*Изоленты
**Прорезиненная тканевая изолента
**Тканевые изоленты
**Резиновые самовулканизирующиеся изоленты
**Силиконовые самослипающиеся ленты
**Полиимидная лента
**ПВХ изоленты
**Канцелярская липкая лента «скотч»
*Изоляционные трубки
**Трубка из ПВХ — «кембрик»
**Фторопластовая трубка
**Стеклотканевая с силиконом
**Термоусадочная трубка
*Дополнительные сведения о полимерах
Проводники
Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т.д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется «металловедение».
Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли.
Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных металлов:
Металл | Удельное сопротивление Ом*мм2/м |
---|---|
Серебро | 0,015. 0,0162 |
Медь | 0,01724. 0,018 |
Золото | 0,023 |
Алюминий | 0,0262. 0,0295 |
Иридий | 0,0474 |
Вольфрам | 0,053. 0,055 |
Молибден | 0,054 |
Цинк | 0,059 |
Никель | 0,087 |
Железо | 0,098 |
Платина | 0,107 |
Олово | 0,12 |
Свинец | 0,217. 0,227 |
Титан | 0,5562. 0,7837 |
Висмут | 1,2 |
Видим лидеров нашего списка: Ag, Cu, Au, Al.
Серебро
Ag — Серебро. Драгоценный металл. Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы делать из него провода. На 5% лучшая электропроводность по сравнению с медью, при разнице в цене почти в 100 раз.
Примеры применения
В виде покрытий проводников в СВЧ технике. Ток высокой частоты, из-за скинэффекта течет по поверхности проводника, а не в его толще, поэтому тонкое покрытие волновода серебром дает бОльший прирост проводимости, чем покрытие серебром проводника для постоянного тока.
В сплавах контактных групп. Контакты силовых, сигнальных реле, рубильников, выключателей чаще всего изготовлены из сплава с содержанием серебра. Переходное сопротивление такого контакта получается ниже медного, он меньше подвержен окислению. Так как контакт обычно миниатюрен, стоимость этой малой добавки серебра к стоимости изделия незначительно. Хотя при утилизации большого количества реле, стоимость серебра делает целесообразным работу бокорезами по отделению контактов в кучку для последующего аффинажа.
Контакты силового реле на 16 Ампер. Согласно документации производителя
контакты содержат серебро и кадмий.
Различные реле. Верхнее реле имеет даже посеребренный корпус с характерной патиной. Содержание драгметаллов в изделиях, выпущенных в СССР было указано в паспортах на изделия.
В качестве присадки в припоях. Качественные припои (как твёрдые так и мягкие) часто содержат серебро.
Проводящие покрытия на диэлектриках. Например, для получения контактной площадки на керамике, на неё наносится суспензия из серебряных частиц с последующим запеканием в печи (метод «вжигания»).
Компонент электропроводящих клеев и красок. Электропроводящие чернила часто
содержат суспензию серебряных частиц. По мере высыхания таких чернил, растворитель
испаряется, частицы в растворе оказываются всё ближе, слипаясь и создавая проводящие
мостики, по которым может протекать ток. Хорошее видео с рецептом по созданию таких
чернил.
Недостатки
Несмотря на то, что серебро — благородный металл, он окисляется в среде с содержанием
серы:
4Ag + 2H2S + O2 → 2Ag2S + 2H2O
Образуется темный налет — «патина». Также источником серы может служить резина, по-
этому провод в резиновой изоляции и посеребренные контакты — плохое сочетание.
Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.
Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь. Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.
Примеры применения
Провода. Основное применение меди в чистом виде. Любые добавки снижают электропроводность, поэтому сердцевина проводов обычно — чистейшая медь.
Гибкие многожильные провода различного сечения.
Гибкие тоководы. Если проводники для стационарных устройств можно в принципе изготовить из любого металла, то гибкие проводники делают почти всегда только из меди, алюминий для этих целей слишком ломкий. Содержат множество тоненьких медных жилок.
Теплоотводы. Медь не только на 56% лучше алюминия проводит ток, но ещё имеет почти вдвое лучшую теплопроводность. Из меди изготавливают тепловые трубки, радиаторы, теплораспределяющие пластины. Так как медь дороже алюминия, часто радиаторы делают составными, сердцевина из меди, а остальная часть из более дешевого алюминия.
Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди, он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор с развитым оребрением уже охлаждает сам стержень.
При изготовлении фольгированных печатных плат. Печатные платы, в любом электронном устройстве изготовлены из пластины диэлектрика, на который наклеена медная фольга. Все соединения между элементами печатной платы выполнены дорожками из медной фольги.
Техника сверхвысокого вакуума. Из металлов и сплавов только нержавеющая сталь и медь пригодны для камер сверхвысокого вакуума в таких приборах, как ускорители элементарных частиц или рентгеновские спектрометры. Все остальные металлы в вакууме слегка испаряются и портят вакуум.
Аноды рентгеновских трубок. В рентгеноструктурном анализе требуется монохроматическое рентгеновское излучение. Его источником зачастую является облучаемая электронами медь (спектральная линия Cu Kα), которая к тому же прекрасно отводит тепло. Если же требуется другое излучение (Co или Fe), его получают от маленького кусочка соответствующего металла на массивном медном теплоотводе. Такие аноды всегда охлаждаются проточной водой.
Интересные факты о меди
Алюминий
Al — Алюминий. «Крылатый металл» четвертый по проводимости после серебра, золота и меди.
Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три
раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из
алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь, как проводник везде, если
бы не пара его противных свойств, но об этом в недостатках.
Чистый алюминий, как и чистое железо, в технике практически не применяется (исключения
— провода и фольга). Любой «алюминиевый» предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия:
Примеры применения
Слева старый алюминиевый провод. Справа алюминиевые кабели различного сечения,
пригодные для укладки в грунт. В частности кабелем справа был подключен к электроэнергии целый этаж здания. Кабель помимо наружной резиновой оболочки имеет бронирующую стальную ленту, для защиты нижележащей изоляции от повреждений, к примеру лопатой при раскопке.
Теплоотводы. Не только домашние батареи делают из алюминия, но и радиаторы у
микросхем, процессоров, делают из алюминия.
Различные алюминиевые радиаторы.
Корпуса приборов. Корпус жёсткого диска в вашем компьютере отлит из алюминиевого сплава. Небольшая добавка кремния улучшает прочностные качества алюминия, сплав силумин — это корпуса жёстких дисков, бытовых приборов, редукторов и т. д.
Анодированный алюминий (алюминий, у которого электрохимическим путем окисная пленка
на поверхности сделана потолще и прочнее) хорошо окрашивается и просто красив. Окисная
пленка (Al2O3 — из того же вещества состоят драгоценные камни рубины и сапфиры) достаточно твёрдая и износостойкая, но к сожалению алюминий под ней мягок, и при сильном воздействии ломается как лёд на воде.
Экраны. Электромагнитное экранирование часто делается из алюминиевой фольги или тонкой алюминиевой жести. Можете провести простой эксперимент, мобильный телефон
завернутый в фольгу потеряет сеть — он будет заэкранирован.
Отражающее покрытие у зеркал. Тонкая пленка алюминия на стекле отражает 89% падающего света (примерное значение, зависит от условий) (Серебро 98%, но на воздухе темнеет из-за сернистых соединений). Любой лазерный принтер содержит вращающееся зеркало, покрытое тонким слоем алюминия.
Зеркала от оптической системы планшетного сканера. Обратите внимание, оптические зеркала имеют металлизацию стекла снаружи, в отличии от привычных бытовых зеркал, где отражающее покрытие для защиты за стеклом. Бытовые зеркала дают двойное отражение — от поверхности стекла и от отражающего покрытия, что не так критично в быту, как защищенность отражающего покрытия.
Электроды обкладок конденсаторов. Алюминиевая фольга, разделенная слоем диэлектрика и туго свернутая в цилиндр — часть электрических конденсаторов (впрочем, для уменьшения габаритов конденсаторов фольгу заменяют алюминиевым напылением). Тот факт, что пленка оксида алюминия тонкая, прочная и не проводит ток, используется в электролитических конденсаторах, обладающими огромными для своих габаритов электрическими емкостями.
Недостатки
Алюминий — металл активный, но на воздухе покрывается оксидной пленкой, которая предохраняет металл от разрушения и скрывает его активную натуру. Если не дать алюминию формировать стабильную защитную пленку, например капелькой ртути, алюминий активно реагирует с водой. В щелочной среде алюминий растворяется, попробуйте залить алюминиевую фольгу средством для прочистки труб — реакция будет бурная, с выделением взрывоопасного водорода. Химическая активность алюминия, в паре с большой разницей в электрооотрицательности с медью делает невозможным прямое соединение проводов из этих двух металлов. В присутствии влаги (а она в воздухе есть почти всегда) начинает протекать гальваническая коррозия с разрушением алюминия.
Два идентичных трансформатора от микроволновых печей. Левый вышел из строя по причине алюминиевых обмоток — отгорел провод от контакта — алюминий плохо паяется мягкими припоями, попытка обеспечить контакт также как и у медного провода привела к поломке.
Алюминий ползуч. Если алюминиевый провод очень сильно сжать, он деформируется
и сохранит новую форму — это называется «пластическая деформация». Если сжать его не
так сильно, чтобы он не деформировался, но оставить под нагрузкой надолго — алюминий
начнет «ползти» меняя форму постепенно. Это пакостное свойство ведет к тому, что хорошо
затянутая клемма с алюминиевым проводом спустя 5-10-20 лет постепенно ослабнет и будет
болтаться, не обеспечивая былого электрического контакта. Это одна из причин, почему ПУЭ
запрещает тонкий алюминиевый провод для разводки электроэнергии по потребителям в
зданиях. В промышленности не сложно обеспечить регламент — так называемая «протяжка»
щитка, когда электрик периодически проверяет затяжку всех клемм в щитке. В домашних же условиях, обычно пока розетка с дымом не сгорит — никто и не озаботится качеством контакта. А плохой контакт — причина пожаров.
Алюминий, по сравнению с медью, менее пластичный, риска от ножа на жиле, при сьёме изоляции с провода быстрее приведет к сломавшейся жиле, чем у меди, поэтому изоляцию с алюминиевых проводов надо счищать как с карандаша, под углом, а не в торец.
Интересные факты об алюминии
Источники
В крупных строительных магазинах (OBI, Leroy Merlin, Castorama) обычно есть в наличии алюминиевый профиль разных размеров и форм. Неплохим источником может послужить штампованная алюминиевая посуда — она очень дешева и существует разных форм. Но обратите внимание на марки. Если нужен 6061 и тем более 7075, придется покупать его у фирмы, специализирующейся по металлам.
Самый лучший проводник электричества
При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью. Исходя из всего выше сказанного, все материалы поделились на три группы:
Каждая из групп нашла широкое применение в электротехнике.
Проводники
Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.
Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.
Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.
Полупроводники
Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.
К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.
Диэлектрики
Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.
Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.
Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.
Найден металл, который пропускает электрический ток без производства тепла.
Лучший проводник
Лучший проводник — серебро ( табл. 5.7) имеет высокую степень миграции атомов по поверхности подложки и быстро покрывается пленкой сернистых соединений. [1]
Лучшие проводники теплоты и электрического тока — серебро, медь, золото и алюминий. [2]
Лучшим проводником является серебро, затем следует медь. [3]
Лучшими проводниками являются те металлы, которые оказывают наименьшее сопротивление прохождению электрического тока. [4]
Лучшими проводниками электричества являются серебро, медь, золото и алюминий, Эти же металлы являются наиболее теплопроводными. [5]
Лучшим проводником электричества является серебро, за которым следуют медь, золото, алюминий, железо. Наряду с медными изготовляются и алюминиевые электрические провода. [6]
Лучшими проводниками теплоты являются металлы, у которых Я изменяется от 3 до 418 вт / м-град. Коэффициенты теплопроводности чистых металлов, за исключением алюминия, с возрастанием температуры убывают. [7]
Лучшим проводником электричества является серебро, за которым следуют медь, золото, алюминий, железо. Наряду с медными изготовляются и алюминиевые электрические провода. [8]
Один из лучших проводников электричества — медь — никак не удается перевести в сверхпроводящее состояние. [9]
Один из лучших проводников электричества — медь — никак не удается перевести в сверхпроводящее состояние. [10]
Серебро — самый лучший проводник электричества и тепла. В изделиях применяется в виде сплава с другими металлами, главным образом с медью, что повышает их твердость. Содержание серебра в сплавах указывается пробой. [11]
После серебра и меди металлический алюминий — лучший проводник электричества и тепла. [14]
Вся правда о Мифах
Самый лучший проводник тепла и электричества является также и самым отражающим из всех химических элементов. Главный недостаток серебра в том, что оно слишком дорогое. Единственная причина, почему в нашем электрооборудовании мы используем не серебряные, а медные провода, заключается в том, что медь — второй по проводимости элемент — намного дешевле.
Помимо украшений, серебро главным образом используется в фотопромышленности, батарейках с длительным сроком эксплуатации и солнечных панелях.
Серебро обладает любопытнейшей способностью стерилизовать воду. Причем требуется буквально крошечное количество — десять частей на миллиард. Сей удивительный факт был известен еще с древнейших времен: так, в V веке до н. э. Геродот писал о персидском царе Кире, который постоянно возил с собой личный запас воды, взятой из особого источника, вскипяченной и запечатанной в серебряные сосуды.
И римляне, и греки не раз отмечали, что еда и питье, помещенные в серебряную посуду, сохраняются намного дольше. Сильные бактерицидные качества серебра использовались за множество веков до того, как были обнаружены сами бактерии. Этим можно объяснить, почему на дне древних колодцев часто находят серебряные монеты.
Небольшое предостережение, прежде чем вы начнете лить пиво в свою серебряную кружку.
Во-первых, серебро хоть и убьет бактерии в лабораторных условиях, однако далеко не факт, что оно даст тот же самый эффект, оказавшись у вас внутри. Многие из предполагаемых достоинств серебра до сих пор не подтверждены. А Управление по санитарному надзору за качеством пищевых продуктов и медикаментов в США даже запретило компаниям рекламировать пользу серебра для здоровья.
Во-вторых, существует такая болезнь — аргирия. Ее развитие напрямую связано с попаданием внутрь организма человека частиц серебра, растворенных в воде. Наиболее явным симптомом аргирии является отчетливый голубой оттенок кожи.
С другой стороны, соли серебра являются наиболее безопасным заменителем хлора в воде плава тельных бассейнов, а в США серебром даже пропитывают носки легкоатлетов, чтобы ноги не пахли.
Вода — исключительно плохой проводник электричества, особенно вода чистая, которая, кстати, используется как диэлектрик. Все дело в том, что электричество проводят не молекулы Н2O, а растворенные в воде химикаты — например, соль.
Морская вода проводит электричество в сто раз лучше пресной, но даже при этом она в миллион раз худший проводник электричества по сравнению с серебром.
Физический смысл проводимости
Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.
Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.
Диэлектрики
В диэлектриках свободные носители заряда отсутствуют. Протекание электрического тока в таких веществах невозможно при стандартных внешних условиях. Наиболее популярными материалами, которые не проводят электрический ток является слюда, керамика, резина и каучуки.
Также к ним можно отнести воздух и определенные виды газов, но для них, определяющим будет являться степень загрязнения. При наличии достаточного количества свободных ионов, диэлектрические свойства они утрачивают. Таким образом нельзя слепо полагаться что какое-либо вещество является абсолютным диэлектриком и не проводит электричество. При определенных обстоятельства большая часть веществ, заведомо считающихся диэлектриками могут приобретать свойства полупроводников.
Так, например, оксид железа, который в обычных условиях препятствует протеканию электрического тока, при повышении давления и температуры переходит в состояние проводимости, при этом внутренняя его структура не нарушается.
Подводя итоги, отметим что качественное различие веществ, пропускающих или препятствующих протеканию электрического тока является их проводящее состояние. Для металлов оно является постоянным, а для диэлектриков и полупроводников возбужденной фазой. Количественное определение проводимости выражается через удельное электрическое сопротивление.
Удельная проводимость
Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.
Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.
Проводимость металлов
Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.
Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство — высокая теплопроводность.
ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА БУМАГИ
Электроизоляционные свойства. Как электроизоляционный материал бумага из волокон целлюлозы имеет ряд достоинств и недостатков.
К числу достоинств следует отнести ее относительную дешевизну, достаточно высокие показатели механической прочности, гибкость, возможность получения электроизоляционных материалов весьма малой толщины (до 4 мкм) и, самое главное, получение на ее основе изоляции с высокими электрическими характеристиками, достигаемыми в результате пропитки бумаги. При этом пропитывающие составы проникают не только в пространства между волокнами, но и во внутренние полости самих волокон, что дает возможность получения однородной изоляции.
К недостаткам целлюлозных волокнистых материалов относится гигроскопичность, обусловленная как наличием полярных гидроксильных групп, имеющих сродство с полярными молекулами воды, так и капиллярным характером структуры материала. Адсорбированная вода, содержащая следы электролита, является основной причиной электропроводности бумаги. Из-за наличия полярных гидроксильных групп, ориентирующихся в электрическом поле вокруг одинарной связи, проявляется эффект поляризации. Поэтому целлюлоза иметь высокую диэлектрическую проницаемость. Другим недостатком целлюлозных материалов при использовании их для электроизоляции является плохая теплопроводность и относительно низкая термостойкость, ограничивающая возможность повышения рабочей температуры электрооборудования. В условиях высокой рабочей температуры изоляция становится хрупкой и разрушается от вибрации и сотрясения того оборудования, в котором она применяется.
Недостатком электроизоляционных целлюлозных материалов является также неоднородность строения бумаги, что вызывает анизотропию ее свойств и необходимость применения во многих случаях многослойной изоляции.
Улучшить диэлектрические свойства ЭлектрбизблйцйОННШ видов бумаги можно одним из следующих путей: химической обработкой бумаги (ацетилированием, цианэтилированием и пр.), а также введением в композицию бумаги химических добавок или синтетических волокон (полипропиленовых, полиэтиленовых, полистирольных и др.).
Для снижения вредного влияния на диэлектрические свойства изоляции гигроскопичности целлюлозных материалов в большинстве случаев эти материалы используют после их пропитки. Следует иметь в виду, что воздушные поры бумаги имеют меньшую электрическую прочность, чем клетчатка, и замещение воздуха в порах другими более электрически прочными жидкими или твердыми диэлектриками резко повышает электрическую прочность пропитанной бумаги. Перед пропиткой бумагу сушат для удаления влаги. Например, кабельную бумагу обычно высушивают до остаточной влажности 0,2— 0,3 % при температуре не выше 140 °С в вакууме. Имеются сведения, что повышение остаточной влажности до 0,5 % сокращает сроки службы изоляции в 2 раза.
Жидкости, используемые для пропитки электроизоляционных видов бумаги, делятся на неполярные и полярные. К неполярным относятся минеральные масла, представляющие собой смесь неполярных жидких углеводородов трех основных типов: нафтеновых, метановых (парафиновых), ароматических. Полярными жидкостями, используемыми при изготовлении бумажно-масляной изоляции, являются: пентахлордифенил (со-вол), тетрахлордифенил, а также касторовое масло. Показатели механической прочности бумаги в большей степени снижаются при нагревании бумаги в неполярной изоляционной жидкости, чем при ее нагревании в полярной. При нагревании бумаги в этих жидкостях снижается степень ее полимеризации и гидрофильность, повышаются медное и кислотное числа, а также образуются карбонильные и карбоксильные группы.
В качестве электроизоляционной бумаги в настоящее время выпускаются: различные марки кабельной бумаги, предназначенной для изготовления силовых кабелей на различное напряжение; конденсаторная бумага разных марок для силовых конденсаторов, бумага различной толщины для конденсаторов постоянного тока, в том числе толщиной 4 мкм для малогабаритных электрических конденсаторов, конденсаторная бумага повышенной плотности и с малыми диэлектрическими потерями, бумага для электролитических конденсаторов; телефонная электроизоляционная бумага; пропиточные, намоточные и другие виды электроизоляционной бумаги, используемые для изготовления различных электроизоляционных материалов, в том числе гетинакса и фибры; микалентная бумага, применяемая для пазовой изоляции электродвигателей.
Большинство видов электроизоляционной бумаги вырабатывают из специально подготовленной кабельной сульфатной
целлюлозы, которая при изготовлении бумаги не проклеивается. Лишь телефонная бумага, которая не пропитывается и используется в мягких условиях термических воздействий, подвергается проклейке в массе канифольным клеем. Мика-лентная бумага, изготовляемая обычно из хлопка сухим способом, относится к классу длинноволокнистых видов бумаги; она пропитывается бакелитовым лаком, и на ее поверхность наносятся мелкие кусочки слюды.
Ни древесная масса, ни сульфитная целлюлоза для изготовления электроизоляционных видов бумаги не применяются. Сульфатная целлюлоза из лиственных пород древесины применяется лишь в ограниченном количестве, в основном для получения кабельной бумаги для силовых кабелей низкого напряжения.
Электроизоляционные свойства бумаги, в первую очередь, характеризуются показателем ее электрической прочности, величиной диэлектрических потерь и удельным электрическим сопротивлением, а также числом токопроводящих включений на 1 м2 бумаги.
Электрическая прочность бумаги
определяется ее пробивным напряжением, т. е. напряжением электрического тока, при котором происходит пробой диэлектрика с превращением его в проводник. Электрическая прочность бумаги характеризует ее способность противостоять пробою и выражается отношением пробивного напряжения к толщине бумаги в месте ее пробоя. Для тонкой целлюлозной бумаги значение электрической прочности достигает до 250 кВ/мм. С увеличением толщины и влажности бумаги ее электрическая прочность снижается и увеличивается с ростом плотности бумаги и степени фибриллированности исходной бумажной массы. Электрическая прочность бумаги, пропитанной полярными пропиточными массами, выше чем непропитанной.
Источниками диэлектрических потерь в бумаге является поляризация целлюлозы в электрическом поле, обусловленная наличием у целлюлозы полярных гидроксильных групп, а также токопроводящих примесей, усиливающих проводимость особенно с повышением температуры.
Для суждения об электропроводности в диэлектрике, т. е. о перемещении электронов и слабо связанных ионов сквозь диэлектрик под действием электрического поля, пользуются понятиями удельного объемного и удельного поверхностного электрических сопротивлений или обратных им величин — удельной объемной и удельной поверхностной проводимостей.
Очевидно, что чем меньше в бумаге число токопроводящих включений на 1 м2 бумаги, т. е. чем чище бумага и меньше в ней вкраплений железа, меди и угля, тем выше ее качество как диэлектрика.
Проводимость бумагой электрического тока
В результате введения в бумажную массу в качестве наполнителя электропроводящих частиц какого-либо вещества можно получить бумагу, в которой эти частицы, соприкасаясь между собой, придают ей способность проводить электрический ток. В зависимости от природы электропроводящих частиц, их количества в бумаге, а также от степени уплотнения электропроводящей бумаги изменяются ее электрическое сопротивление и, следовательно, потребительские свойства. Практикой установлено, что при изготовлении электропроводящей бумаги лучше всего использовать для введения в бумажную массу графит или сажу, сравнительно хорошо удерживаемые на волокнах и обеспечивающие возможность получения бумаги с нужными пределами электрического сопротивления.
Электропроводящая бумага из небеленой сульфатной целлюлозы, содержащая около 10 % мелкодисперсной газовой сажи, применяется при изготовлении мощных высоковольтных кабелей. Сердечник кабеля обматывается слоем такой бумаги, затем несколькими слоями высоковольтной электроизоляционной кабельной бумаги и, наконец, опять несколькими слоями электропроводящей бумаги. После пропитки изоляционным маслом на кабель наносят металлическую обмотку. Газовая сажа, находящаяся в электропроводящей бумаге, поглощает продукты разложения изоляционных масел, если они образуются, и снижает возможности их образования. Кроме того, электропроводящая бумага предотвращает пробои кабеля, вызванные неравномерным распределением электрического поля.
Электропроводящая бумага может быть использована также в различного рода электронагревателях, вместо металлизированной бумаги, а также в специальной аппаратуре (интеграторах ЭГДА), предназначенной для моделирования процессов методом электроаналогий.
Об электрических свойствах бумаги дополнительные сведения приведены в работе [2; 20, с. 567—609].
Топ лучших проводников — металлов
4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:
Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.
Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.
Способность различных веществ проводить электрический ток
Если не принимать во внимание физическое состояние, то все материалы можно условно разделить на три группы по степени проводимости электричества:
Рассмотрим каждый случай более подробно.
Проводники
К этой группе можно отнести вещества, которые проводят электрический ток великолепно. Это – металлы, электролиты и ионизированные газы.
Металлы как проводники электрического тока
Первая подгруппа веществ имеет кристаллическую решетку и отличается большим наличием свободных электронов, которые и являются носителями заряда при создании соответствующих условий, в частности электрического поля. Их расплавы проводят электрический ток не хуже, чем в твердой фазе. Не стоит забывать, что металлы могут быть и в жидком состоянии, примером чего является ртуть. Но наибольшее распространение, в качестве проводников, получили твердые фазы этих веществ. При взаимодействии с кислородом металл образуют оксиды, которые проводят электрический ток только при определенных условиях и по своей сути являются полупроводниками. Речь о них пойдет ниже. Из металлов отличной электропроводностью обладают медь, алюминий, железо, серебро и др.
Факторы, влияющие на проводимость металлов
Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.
Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.
Самый электропроводный металл — это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.