какой материал следует применять для искусственных заземлителей
ПУЭ 7. Правила устройства электроустановок. Издание 7
Раздел 1. Общие правила
Глава 1.7. Заземление и защитные меры электробезопасности
Заземлители
1.7.109. В качестве естественных заземлителей могут быть использованы: ¶
1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах; ¶
2) металлические трубы водопровода, проложенные в земле; ¶
3) обсадные трубы буровых скважин; ¶
4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т.п.; ¶
5) рельсовые пути магистральных неэлектрифицированных и железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами; ¶
6) другие находящиеся в земле металлические конструкции сооружения; ¶
7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается. ¶
1.7.110. Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с 1.7.82. ¶
Не следует использовать в качестве заземлителей железобетонные конструкции зданий и сооружений с предварительно напряженной арматурой, однако это ограничение не распространяется на опоры ВЛ и опорные конструкции ОРУ. ¶
Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций, приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность пользования фундаментов в сильноагрессивных средах должны быть определены расчетом. ¶
1.7.111. Искусственные заземлители могут быть из черной или оцинкованной стали или медными. ¶
Искусственные заземлители не должны иметь окраски. ¶
Материал и наименьшие размеры заземлителей должны соответствовать приведенным в табл.1.7.4. ¶
1.7.112. Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ следует выбирать по условию термической стойкости при допустимой температуре нагрева 400 °С (кратковременный нагрев, соответствующий времени действия защиты и отключения выключателя). ¶
В случае опасности коррозии заземляющих устройств следует выполнить одно из следующих мероприятий: ¶
увеличить сечения заземлителей и заземляющих проводников с учетом расчетного срока их службы; ¶
применить заземлители и заземляющие проводники с гальваническим покрытием или медные. ¶
При этом следует учитывать возможное увеличение сопротивления заземляющих устройств, обусловленное коррозией. ¶
Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора. ¶
Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п.¶
Инструкция по устройству сетей заземления и молниезащите
2. Заземлители
2.2. Искусствениые заземлители
2.2.1. При невозможности использования естественных заземлителей, а также в случаях, когда токовые нагрузки на естественные заземлители превышают допустимые (см. гл. 1.7 ПУЭ) или естественные заземлители не обеспечивают безопасных значений напряжения прикосновения по ГОСТ 12.1.038-82, в дополнение к естественным заземлителям необходимо сооружать искусственные стальные вертикальные и горизонтальные заземлители. Искуственные заземлители не должны иметь окраски. ¶
2.2.2. Вертикальные заземлители приведены на рис.4. Длина вертикальных электродов определяется проектом, но не должка быть менее 1 м; верхний конец вертикальных заземлителей должен быть заглублен, как правило, на 0,5-0,7 м. ¶
2.2.3. Горизонтальные заземлители используют для связи вертикальных заземлителей или в качестве самостоятельных заземлителей. Глубина прокладки горизонтальных заземлителей — не менее 0,5-0,7 м. Меньшая глубина прокладки допускается в местах их присоединений к оборудованию, при вводе в здания, при пересечении с подземными сооружениями и в зонах многолетнемерзлых и скальных грунтов. Горизонтальные заземлители из полосовой стали следует укладывать на дно траншеи на ребро (рис. 5). ¶
¶
Рис. 4. Установка вертикальных заземлителей ¶
2.2.4. Горизонтальные заземлители в местax пересечения с подземными сооружениями, железнодорожными путями и дорогами, а также в других местах возможных механических повреждений следует защищать металлическими или асбоцементными трубами. ¶
¶
Рис. 5. Прокладка горизонтальных заземлителей в траншее (а) и совместно с кабелем (б): 1 – полоса; 2 – мягкий грунт; 3 – грунт; 4 – силовые кабели; 5 – контрольные кабели ¶
Прокладку заземлителей параллельно кабелям или трубопроводам следует выполнять на расстоянии не менее 0,3 м, а при пересечениях — не менее 0,1 м. ¶
2.2.5. По условиям механической прочности размеры заземлителей должны быть следующие (не менее): ¶
Диаметр круглых заземлителей, мм: ¶
Сечение прямоугольных заземлителей, мм 2 — 48 ¶
Толщина прямоугольных заземлителей, мм — 4 ¶
Толщина полок угловой стали, мм — 4 ¶
Толщина стенки труб, мм — 3,5 ¶
2.2.6. В случае повышенной коррозионной опасности необходимы следующие мероприятия или их сочетания: использование стали круглого сечения; применение оцинкованных заземлителей; заполнение траншеи влажной утрамбованной глиной; увеличение сечения заземлителя; применение электротехнической защиты. ¶
2.2.7. Сечение заземлителей с учетом коррозионной активности грунта следует выбирать по табл. 3. ¶
2.2.8. Если диаметр горизонтального стального заземлителя меньше 12 мм, то необходимо при расположении этого заземлителя ближе, чем 0,3 м от железобетонного фундамента изолировать часть заземлителя на расстоянии в обе стороны от фундамента до 0,5 м. ¶
2.2.9. Места входа в грунт заземлителей и места пересечения ими грунтов с различной воздухопроницаемостью рекомендуется гидроизолировать. ¶
При пересечении трасс кабелей, имеющих свинцовую или алюминиевую оболочку, с трассой горизонтального стального заземлителя, если оба элемента прокладывают непосредственно в грунте, расстояние между заземлителем и кабелем в местах пересечения должно быть выбрано не менее 1 м. ¶
При невозможности выполнения этого требования кабель, наоборот, рекомендуется прокладывать максимально близко к заземлителю, и его оболочку следует дополнительно соединить с заземлителем. Место соединения необходимо гидроизолировать (см. также п. 2.9). ¶
Гидроизоляцию можно выполнить при помощи специальных коррозионных лент, полихлорвиниловых обмоток и тафтяных лент с пропиткой их горячим битумом. Верхняя точка наложения изоляции должна находиться на 10-15 см выше поверхности грунта, нижняя — на том же расстоянии ниже уровня поверхности или под слоем раздела грунтов в случае их неоднородности. ¶
2.2.10. Общие требования к конструктивному выполнению заземлителей промышленных электроустановок в зависимости от принципа нормирования заземляющего устройства в соответствии с требованиями гл. 1.7 ПУЭ изложены в приложении 1, условия выравнивания потенциалов вокруг промышленной установки или здания, в котором она размещена — в приложении 2, а условия заземления внешней ограды электроустановок — в приложении 3. ¶
Таблица 3. ¶
Коррозионная активность грунта
Материал, рекомендуемый для изготовления заземлителя
Допустимые к применению заземлители
Стальные вертикальные заземлители
Весьма высокая
(ρгр 100 Ом м)
Уголок размером 50х50х5 мм для мягких грунтов и 63х63х6 мм для грунтов средней твердости
Стальные горизонтальные заземлители
Весьма высокая
(ρгр 100 Ом м)
Сталь круглая диаметром 10 мм
Полоса 20х4, 30х4, 40х4 мм
2.2.11. При сооружении искусственных заземлителей в зонах с большим удельным сопротивлением земли ρгр ≥ 500 Ом м)необходимы следующие мероприятия: ¶
1) установка вертикальных заземлителей увеличенной длины, если с глубиной удельное сопротивление грунта снижается, а естественные углубленные заземлители, например скважины с металлическими обсадными трубами, отсутствуют; ¶
¶
Рис. 6. Соединение заземляющих проводников с вертикальными заземлителями; 1 – стержневой заземлитель; 2 – заземляющий проводник из круглой стали; 3 – заземляющий проводник из полосовой стали; 4 – заземлитель из угловой стали ¶
2) установка выносных заземлителей, если вблизи от электроустановок есть участки с меньшим удельным сопротивлением грунта; ¶
3) укладка в траншеи вокруг горизонтальных заземлителей в скальных грунтах влажного глинистого грунта или другого электропроводящего материала с последующей трамбовкой и засыпкой обратным грунтом до верха траншеи; ¶
4) применение искусственной обработки грунта с целью снижения его удельного сопротивления, если другие способы не могут быть применены или не дают необходимого эффекта; ¶
¶
Рис. 7. Соединение заземляющих проводников с горизонтальными заземлителями: а) продольное соединение проводников из полосовой стали, б) ответвление проводника из полосовой стали; в) ответвление проводника из круглой стали; г) продольное соединение проводников из полосовой и круглой стали; д) продольное соединение проводников из круглой стали; е) ответвление проводника из круглой стали; 1 – стальная полоса; 2 – сталь круглая ¶
5) помещение заземлителей в непромерзающие водоемы и талые зоны; ¶
6) использование обсадных труб скважин; ¶
7) применение в дополнение к углубленным заземлителям горизонтальных заземлителей на глубине не менее 0,3 м, предназначенных для работы в летнее время при оттаивании поверхностного слоя земли; ¶
8) создание искусственных талых зон путем покрытия грунта над заземлителем слоем торфа или другого теплоизоляционного материала на зимний период и раскрытия его на летний период, а также использование электроподогрева. ¶
Мероприятия, изложенные в пп. 5-8, относятся к районам многолетнемерзлых пород. ¶
Заземлитель: что это такое, классификация, требования
Заземлитель (earth electrode) — это проводящая часть или совокупность электрически соединенных между собой проводящих частей, находящихся в электрическом контакте с локальной землей непосредственно или через промежуточную проводящую среду (определение согласно ГОСТ 30331.1-2013 [1]). В некоторой нормативной документации наряду или вместо более корректного термина «заземлитель» используется другой термин — «заземляющий электрод».
Отдельно выделяют электрически независимый заземлитель, который представляет собой заземлитель, расположенный на таком расстоянии от других заземлителей, что электрические токи, протекающие между ними и Землёй, не оказывают существенного влияния на электрический потенциал независимого заземлителя.
При выполнении отдельного (независимого) заземлителя для функционального заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.
Рис. 1. Пример выполнения заземляющего устройства (на рисунке показаны в том числе вертикальные заземлители)
Классификация.
Заземлители классифицируют по следующим признакам:
по типу исполнения:
по конструктивному исполнению:
В качестве естественных заземлителей могут быть использованы:
В качестве естественных заземлителей не рекомендуется использовать:
Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с указаниями МЭК 60364-4-41 (пункт 541.3.9).
При этом должны быть приняты меры, исключающие искрение в местах присоединения и на стыках труб при протекании электрического тока по трубопроводу.
Искусственные заземлители могут быть из черной или оцинкованной стали или медными. Оцинкованную сталь для заземлителей допускается применять, если площадь оцинкованной поверхности, находящейся в грунте, существенно больше площади поверхности заземляемой арматуры железобетонных фундаментов и других подземных, не изолированных от грунта, связанных с заземляющим устройством металлических сооружений [3].
Искусственные заземлители не должны иметь цветовой индикации.
Минимальные размеры заземлителей из наиболее распространенных материалов с точки зрения коррозионной и механической стойкости, проложенных в земле и замоноличенных в бетон приведены в таблице 1 (на основе таблицы 54.1 из [2]).
Материал и поверхность электрода | Профиль | Диаметр, мм | Площадь поперечного сечения, мм 2 | Толщина, мм | Масса покрытия, Гр/м 2 | Толщина покрытия/оболочки, мкм |
Сталь, замоноличенная в бетон (голая, горячего цинкования или нержавеющая) | Круглая проволока | 10 | — | — | — | — |
Лента или полоса | — | 75 | 3 | — | — | |
Сталь горячего цинкования c | Полоса b или профилированная полоса/пластина. — сплошная пластина, В случае опасности коррозии заземляющих устройств следует выполнять одно из следующих мероприятий: Требования. Типы, материалы и размеры заземлителей должны обеспечивать коррозионную и необходимую механическую прочность на весь срок службы. С точки зрения коррозии, могут рассматривать следующие факторы: pH почвы, удельное сопротивление почвы, влажность почвы, блуждающие токи и токи утечки переменного и постоянного токов, химическое загрязнение и близость несовместимых материалов. Минимальная толщина защитного покрытия должна быть больше для вертикальных заземлителей, чем для горизонтальных заземлителей, из-за большего механического воздействия при их заглублении. Эффективность конкретного заземлителя зависит от характера грунта. Число заземлителей выбирают в зависимости от характера грунта и его сопротивления. В приложении D [2] приведены методы оценки сопротивления заземлителей. При выборе типа и глубины установки заземлителей должны быть учтены возможности механического повреждения и минимизации воздействия высыхания или промерзания грунта. При применении в заземлителях разных материалов должна быть предусмотрена возможность возникновения электрической коррозии. Для внешних проводников (например, заземляющих) соединенных с замоноличенными в бетон фундаментными заземлителями, соединение, выполненное из стали горячего цинкования не должно быть в грунте. В системе ТТ, где применяют катодную защиту и сторонние проводящие части электрооборудования непосредственно соединяют с металлическими трубами для огнеопасных жидкостей или газов, последние могут быть применены, как единственный заземлитель для данного оборудования. Заземлители не должны быть непосредственно погружены в воду потока, реки, водоема, озера и т.п. Если заземлитель состоит из частей, которые должны быть соединены вместе, соединение должно быть выполнено экзотермической сваркой, опрессовкой, зажимами или другим разрешенным механическим соединителем. Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций и необходимость приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность использования фундаментов в сильноагрессивных средах должны быть определены расчетом. Использование естественных заземлителей в качестве элементов заземляющего устройства не должно приводить к их повреждению при протекании по ним токов короткого замыкания или к нарушению работы устройств, с которыми они связаны. При включении в систему уравнивания потенциалов трубопроводов с горючими и взрывоопасными жидкостями, газами и смесями должны быть обеспечены меры, исключающие искрение в местах присоединения проводников уравнивания потенциалов (сварка) и во фланцах трубопроводов (шунтирующие перемычки). При напряжении на заземляющем устройстве выше допустимого значения для снижения сопротивления должны быть установлены вертикальные заземлители или выносные заземлители. Вертикальные заземлители должны быть установлены равномерно по периметру заземляющего устройства. Длина и число вертикальных заземлителей должны быть определены расчетом. Выносной заземлитель сооружается в местах с низким удельным сопротивлением грунтов, недоступных для частого пребывания людей и животных. Выносной заземлитель представляет собой горизонтальный контур с вертикальными заземлителями или без них, который выполняется в виде многоугольника с тупыми или скругленными углами и прокладывается на глубине не менее 1 м. Соединение выносного заземлителя с заземляющим устройством электроустановки осуществляется с помощью горизонтальных заземлителей, а также ВЛ и КЛ. Удаленность выносного заземлителя от искусственного заземлителя при их соединении горизонтальными заземлителями не должна превышать 0,5 км, а при соединении ВЛ и КЛ — 2 км. Число горизонтальных заземлителей должно быть не менее двух. Их прокладка осуществляется на глубине не менее 1 м. Число и сечение проводов или жил кабеля выбирают так, чтобы продольное сопротивление линии было менее сопротивления выносного заземлителя. При устройстве выносного заземлителя должны быть предусмотрены меры по защите людей и животных от поражения электрическим током. Для этого необходимо, чтобы линия была изолирована от земли на напряжение не менее напряжения на заземляющем устройстве и исключена возможность прикосновения к проводнику, соединяющему линию с выносным заземлителем. Виды и назначение искусственных заземлителейМеталлоконструкции, специально выполняемые для заземляющих цепей, характеризуются в качестве искусственного заземлителя. Используется этот вид электродов в таких случаях: Такой структурный элемент заземления имеет определенную конфигурацию (материал, количество элементов, длина, месторасположение электродов). Что выступает в роли искусственного заземлителяЗаземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей. Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.
Искусственный заземлитель изготавливается из таких материалов: Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип). Чем отличаются вертикальные и горизонтальные заземлителиОсобого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения. Стандартные показатели заглубления:
Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя. Функции искусственного заземляющего элементаСогласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача. Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта. Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:
Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента. Как устанавливать искусственный электрод в грунтИскусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:
Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления. Как определить сопротивлениеСогласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов. Факторы, которые оказывают первостепенное влияние на показатель: Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.
Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления. Основные требованияБольшая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель: Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета: Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента. Как подбираются размеры искусственных электродовВсе параметры основной конфигурации проводников в обязательном порядке должны соответствовать нормативным требованиям профильной документации, в частности ГОСТ Р 50571.5.54-2013. Правильно подобранные материалы и размеры электродов, применение оптимальной вариации производства такого электромонтажа — основные рабочие моменты заземления, которые влияют на качество работы заземлителя. Искусственный электрод обладает важным эксплуатационным преимуществом, обусловленным принципом монтажа. Такой вид чаще монтируется глубоко в грунт. За счет грунтовых вод уменьшается показатель удельного сопротивления материала. Итог — реализация оптимальной характеристики и стабильности конечного сопротивления заземлителя.
|