какой материал крепче алмаза

Какой самый твердый материал на Земле?

какой материал крепче алмаза

Алмаз оценивается по шкале твердости Мооса на 10 баллов, что говорит о том, что это самый твердый природный материал, когда он подвергается царапинам. Однако, по прогнозам, лонсдейлит, вещество, обнаруженное в метеоритах, будет еще более твердым, чем алмаз.

Ну, почти… ученые обнаружили потенциального соперника, который, как полагают, даже тверже, чем алмаз.

какой материал крепче алмаза

Самое твердое вещество природного происхождения на нашей планете

Когда дело доходит до природных твердых веществ, алмаз является явным победителем. Благодаря своей компактной структуре его очень трудно превзойти по твердости. Теперь возникает вопрос… как мы измеряем твердость?

Измерение твердости

В материаловедении очень важна оценка твердости материала. Однако определить твердость не так-то просто. Таким образом, твердость можно измерить по-разному, в зависимости от контекста и применимости.

Шкала твердости Мооса

какой материал крепче алмаза

Шкала твердости минералов Мооса.

Алмаз получил 10 баллов по этой шкале, что ясно указывает на то, что это самый твердый натуральный материал, когда его подвергают царапинам. Чтобы понять, насколько хорош алмаз, рассмотрим сталь, которая известна своей твердостью и имеет только 4,5 балла по этой шкале!

Так вот, измерение твердости по стойкости вещества к царапинам одобрялось далеко не всеми. Таким образом, ученые начали искать альтернативный метод измерения твердости. Была разработана еще одна методика определения твердости, в которой для оценки твердости использовался индентор.

Тест твердости по Виккерсу

Что делает бриллиант таким твердым?

какой материал крепче алмаза

Алмаз как тетраэдрическая структура углерода.

Из-за этой прочной ковалентной связи у алмазов нет свободных электронов, что делает их плохим проводником электричества, но отличным проводником тепла. Фактически, алмаз примерно в пять раз лучше по теплопроводности, чем медь. Благодаря своей фантастической теплопроводности алмазы часто присутствуют в электрических деталях, например, в радиаторах.

Алмазы не непобедимы.

Прочитав это, вы можете почувствовать, что бриллианты непобедимы, но на самом деле это не так. Алмаз становится уязвимым при очень высоких температурах. Когда вы нагреваете алмаз выше 800 °C, его химические и физические свойства больше не остаются неизменными. Нарушение характерной прочности алмаза. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали. Характерная твердость алмаза нарушается. Они начинают химически реагировать с железом, что делает алмаз нежелательным для обработки стали.

Поэтому ученые и исследователи давно ищут сверхтвердый материал, обладающий лучшей химической стабильностью. В 2009 году исследователи, работавшие в сотрудничестве из Шанхайского университета Цзяо Тонг и Университета Невады, заявили, что нашли два материала, которые могут победить алмаз в его собственной игре!

Две предложенные потенциальные претендентки на самое твёрдое вещество были: Нитрид бора вюрцита (w-BN) и Лонсдейлит.

Вюрцит нитрид бора (w-BN)

Вюрцит нитрид бора (w-BN) имеет структуру, аналогичную структуре алмаза, но он состоит из атомов бора и азота, а также углерода. Вюрцит нитрид бора чрезвычайно редок и может быть обнаружен только после определенного типа извержения вулкана. Проведенное исследователями в 2009 году моделирование гексагональной структуры w-BN показало, что она на 18% тверже стали. Кроме того, w-BN химически более стабилен, чем алмаз при высоких температурах.

Лонсдейлит

Однако в этих утверждениях о том, что w-BN и лонсдейлит сильнее алмаза, есть загвоздка. Эти утверждения основаны на программе моделирования, запущенной на компьютере, а не на физической проверке. Поскольку эти элементы чрезвычайно трудно найти, они еще не прошли физических испытаний для определения их твердости.

Тем не менее их моделирование предполагает, что эти более твердые, чем алмаз, материалы обладают хорошей термической и химической стабильностью; если мы сможем синтетически производить их в достаточно больших количествах, они могут оказаться переломными. Их можно было использовать как мощные фрезы, помещая их поверх других режущих инструментов. Кроме того, их стабильность при более высоких температурах сделала бы их полезными в космических полетах к Венере или Меркурию, которые имеют обжигающе высокие температуры.

Что ж, алмаз может теоретически потерять свою корону самого твердого материала, но он всегда останется королем драгоценных камней. Более того, утверждение о том, что лонсдейлит является самым твердым веществом, еще не подтверждено физически.

Источник

Существуют ли материалы тверже алмаза

какой материал крепче алмаза

какой материал крепче алмаза

До сих пор думаете, что прочнее алмаза нет ни одного материала? Вот сразу два вещества, кристаллическая решетка которых способна выдерживать в 1,5 раза большие давления, чем алмаз

Кубическая гранецентрированная решетка алмаза, состоящая из атомов углерода, выдерживает огромные давления в испытании на вдавливание сферического пуансона. Ученые подсчитали, что для деформирования алмаза в таком испытании требуется приложить давление в 97 гигапаскалей.

Однако, проведенные в 2009 году исследования показали, что нитрид бора с кристаллической решеткой типа вюрцит (w-BN) и лондсдейлит — одна из аллотропных модификаций углерода — превосходят алмаз в прочности в тесте на вдавливание. Чтобы деформироваать эти материалы, исследователям потребовалось приложить давление соответственно 114 и 152 гигапаскаля.

При больших давлениях прочность w-BN увеличивается на 78% по сравнению с состоянием до приложения давления. Именно благодаря этому свойству деформационного упрочнения, нитрид бора с решеткой вюрцита обладает такой высокой прочностью. Такой же механизм упрочнения характерен и для лондсдейлита, но из-за отсутствия разности в размерах атомов в его структуре прочность такого материала получается даже выше, чем у нитрида бора.

Такие механизмы упрочнения ученые используют для увеличения физических характеристик конструкционных материалов. В отличие от алмаза, сверхтвердые материалы на основе нитрида бора термически стабильны и при высоких температурах не взаимодействуют с кислородом, поэтому область их применения представляется более широкой.

Кстати, у нас есть канал в Telegram, где можно почитать о самых свежих и интересных новостях из мира науки и техники

Источник

Кристалл, который может сокрушить алмаз: в поисках самого твердого материала

В центре нашей планеты породы весом в миллиарды тонн создают силу, которая в три миллиона раз превышает атмосферное давление на поверхности. Тем не менее на столешнице своей скромной лаборатории на севере Баварии физик Наталья Дубровинская может превысить даже это сумасшедшее давление в несколько раз, благодаря устройству, которое умещается у нее в руке.

какой материал крепче алмаза

Может ли быть что-то прочнее алмаза?

Несколько точных поворотов винтов в верхней части небольшого цилиндра — и она может создать давление, в три раза превышающее давление в ядре Земли. Удивительно, но вместе с коллегами из Университета Байройт она обнаружила удивительный материал, способный выдерживать эту феноменальную силу. Он настолько твердый, что может оставить вмятину в кристалле алмаза, который долгое время считался самым твердым материалом в мире.

Ее новое вещество — это кульминация десятилетних поисков современных алхимиков, ученых, которые химичили и возились с химической структурой веществ, пытаясь подстроить и изменить их свойства нужным образом. Это путешествие, в котором было много фальстартов и тупиков. Но последние достижения ученых могут иметь широкие последствия, от прорывов в медицине до изменения нашего понимания далеких миров.

какой материал крепче алмаза

Давление в ядре Земли составляет до 375 ГПа

Любовь человечества к твердым материалам восходит к самым первым дням нашего вида, когда наши предки начали использовать твердые камни, чтобы придавать форму другим более мягким камням, делая из них лезвия. Постепенно их заменяли все более твердыми металлами, пока около 2000 лет не произвели первую сталь. Она оставалась самым твердым известным материалом до 18 века, а потом ученые выяснили, что могут покрывать инструменты алмазами.

Несмотря на очевидную привлекательность для ювелирных изделий, большинство обработанных алмазов используется для создания сверхтвердых покрытий для износостойких инструментов и сверл. В горнодобывающей и нефтяной промышленности такие алмазные инструменты просто необходимы — без них пробиться через сотни метров пород к ценным ресурсам в глубине Земли было бы чрезвычайно трудно, если вообще возможно.

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

«Твердое покрытие необходимо для разного рода применений, начиная от высокоскоростных режущих инструментов, глубоководных сверл, добычи газа и нефти и заканчивая биомедицинским применением», — говорит Ягдиш Нараян, главный материаловед в Университете штата Северная Каролина.

Чтобы понять, что делает материал твердым, нужно взглянуть на атомную структуру его кристаллов. Алмазы образуются из тех же атомов углерода, который составляют мягкий графит — его можно найти в сердцевинке любого карандаша. Разница между этими двумя формами углерода заключается в расположении атомов. Графит формируется из листов атомов углерода, расположенных плоскими шестиугольниками, которые удерживаются слабыми силами притяжения между каждым слоем.

В алмазе же атомы углерода удерживаются в форме тетраэдра, которая чрезвычайно жесткая. В сочетании с тем, что углерод образует сильные связи, это и рождает твердость алмаза.

Слово «алмаз», «адамант», «диамант», «diamond» происходит от древнегреческого «адамас», что означает несокрушимый. Правда, при достаточно высоком давлении ломается и алмаз. Крошечные слабинки в кристалле также могут ослабить его, что делает алмаз уязвимым к распаду.

И это создает для ученых проблему: как изучать поведение материалов при высоком давлении, если даже самый твердый встречающийся в природе материал может разрушиться? Нужно найти что-то более стойкое.

Ложная надежда

Вряд ли вас удивит, что поиск сверхтвердого материала начинается с попытки повторить структуру алмаза, но, по правде говоря, существует не так много элементов, способных связываться между собой таким же образом.

Один из таких материалов — нитрид бора. Подобно углероду, этот синтетический материал бывает в нескольких формах, но можно повторить структуру алмаза, заменив атомы углерода атомами азота и бора. Впервые созданный в 1957 году «кубический нитрид бора» был достаточно твердым, чтобы оцарапать алмаз — как заявляли изначально. Но более поздние тесты показали, что этот материал даже и в половину не такой же твердый, как его аналог на основе углерода.

Следующие несколько десятилетий породили ряд разочарований, когда ученые начали искать способы связать три этих элемента — азот, бор и углерод — в разных формах. Из тонких пленок одного из таких материалов, что были созданы в 1972 году, смогли создать форму, имитирующую структуру алмаза; но из недостатков было то, что процесс включал сложную химию и чрезвычайно высокие температуры для производства. И только в 2001 году алмазоподобный нитрид бора был создан учеными Национальной академии наук Украины в Киеве совместно с коллегами из Франции и Германии. И хотя этот новообнаруженный материал был тверже кристаллов кубического нитрида бора, он все еще проигрывал алмазу.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

Затем, семь лет назад, Чангфенг Чен, физик из Университета штата Невада, и его коллеги из Шанхайского университета Цзяо Тун в Китае решили, что смогут свергнуть алмаз с пьедестала. Они рассчитали, что причудливая шестиугольная форма нитрида бора, известная как вюрцит нитрида бора, сможет выдержать на 18% больше давления, чем алмаз. Этот редкий материал имеет подобную алмазу и кубическому нитриду бора четырехгранную структуру, только связи сформированы под разными углами. Компьютерное моделирование поведения такого материала под давлением показало, что некоторые из этих связей являются гибкими и переориентируют себя на 90 градусов, оказываясь в условиях напряжения, чтобы его снять.

Хотя связи алмаза аналогичным образом реагируют на давление, вюрцит нитрида бора становится на 80% тверже при более высоком давлении. Загвоздка в том, что его довольно опасно создавать — для этого придется искусственно создать взрывы, которые имитируют условия высокого тепла и давления вулканических взрывов. Очевидно, получить их в достаточных объемах будет весьма трудно. Аналогичные проблемы ограничивают потенциал исследований похожего вещества, известного как лонсдейлит, которое должно быть в состоянии выдерживать на 58% больше давления, чем обычные кристаллы алмаза.

какой материал крепче алмаза

Q-углерод — прочная аморфная форма углерода

И лишь в последние несколько лет мы начали наблюдать некоторые прорывы. В 2015 году Джагдиш Нараян и его коллеги из Университета штата Северная Каролина расплавили некристаллическую форму углерода (стеклоуглерод) быстрым лазерным импульсом, нагрев ее до 3700 градусов по Цельсию, а после быстро охладили. Это охлаждение, или гашение, привело к созданию Q-углерода, странной, но исключительно прочной аморфной форме углерода. В отличие от других форм углерода, эта магнитная и светится при воздействии света.

Структура этого материала по большей части представлена связями алмазного типа, но также имеет от 10 до 15 процентов связей графитного типа. Испытания показали, что Q-углерод может быть минимум на 60% тверже алмаза, но это еще предстоит утвердить окончательно. Настоящие испытания на твердость требуют сравнения образцов с наконечником, который тверже испытуемого материала. Пытаясь продавить образец Q-углерода двумя заостренными алмазными наконечниками, появляется проблема: алмазные кончики деформируются.

И вот здесь-то могут пригодиться сверхтвердые наковальни Дубровинской. Ее новый материал представляет собой уникальную форму углерода, известную как нанокристаллические алмазные шарики, и, вместо того чтобы состоять из единой кристаллической решетки атомов углерода, он состоит из множества крошечных отдельных кристаллов — каждый в 11 000 раз меньше толщины человеческого волоса — связанных между собой слоем графена, не менее удивительного материала в один атом углерода толщиной.

Если алмазный кристалл начинает уступать при давлении в 120 ГПа, новый материал может выдержать не меньше 460 ГПа. Он даже может пережить сдавливание для генерации давления до 1000 ГПа. Эти крошечные сферы тверже любой другой известной субстанции на планете. Чтобы почувствовать его силу, представьте 3000 взрослых африканских слонов, балансирующих на одной шпильке. «Это самый твердый из всех известных сверхтвердых материалов», говорит Дубровинская.

Нанокристаллические алмазные шарики также прозрачные, что позволяет им выступать в роли крошечных линз, через которые исследователи могут всматриваться в раздавливаемый материал, используя рентгеновское излучение. «Это позволяет нам сдавливать исследуемый материал и наблюдать за происходящим, — говорит Дубровинская. — Достижение сверхвысокого давления открывает новые горизонты для более глубокого понимания материи».

какой материал крепче алмаза

Нанокристаллические алмазные шарики

Дубровинская и ее коллеги уже применили это для изучения осмия, металла, который находится в числе наиболее устойчивых к сжатию в мире. Они обнаружили, что осмий может сопротивляться сжатию с давлением более 750 ГПа. В этой точке внутренние электроны, которые обычно тесно связаны с ядром атома металла и являются весьма стабильными, начинают взаимодействовать между собой. Ученые полагают, что это странное поведение может привести к переходу металла из твердого в ранее неизвестное состояние вещества. Было бы весьма интересно изучить, какие свойства осмий при этой приобретает.

Сверхтвердые наноалмазы попросту позволяют создать новые режущие края для резьбы по металлу и камню. В порошкообразной форме такие наноалмазы находят применение в косметической промышленности, поскольку обладают высокой впитывающей способностью. Они также легко впитываются в кожу, унося с собой активные вещества. Медицинская промышленность начинает изучать способы использования наноалмазов для переноса лекарств, например, в процессе химиотерапии в труднодоступных участках тела. Исследования также показали, что наноалмазы могут способствовать росту кости и хряща.

Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.

Что самое любопытное, эта недавняя работа может помочь нам раскрыть несколько тайн нашей Солнечной системы. В следующем месяце пройдет международная конференция, на которой эксперты обсудят новые возможности. Если в центре Земли давление, как полагают, доходит до 360 ГПа, в ядре газового гиганта Юпитера давление может достигать невероятных 4500 ГПа.

При таком давлении элементы начинают вести себя странным образом. Водород — в обычном состоянии газ — начинает вести себя как металл, например, и становится способным проводить электричество. Дубровинская и Дубровинский надеются, что их сверхтвердые алмазы могут помочь нам воссоздать эти космические условия. «Мы могли бы смоделировать недра гигантских планет или внеземных суперземель за пределами нашей Солнечной системы. Думаю, еще более удивительно то, что мы можем делать это с помощью чего-то, что можем держать в руках».

Источник

Самое твёрдое вещество в мире: избавляемся от ложных истин

Назвать самое твёрдое вещество в мире не так просто, как может показаться поначалу. Дело в том, что твёрдость материалов может меняться в зависимости от некоторых внешних факторов. В частности, она, как ни странно, может оказаться разной, когда изменяется прилагаемая к веществу нагрузка.

Многие годы эталоном твёрдости считался алмаз. Впрочем, почему считался? В мире материалов его твёрдость до сих пор остаётся эталоном. Всё, что уступает алмазу в твёрдости, но приближается к нему по этому показателю, называют сверхтвёрдым. А вещества, которые твёрже алмаза, несут гордое наименование «ультра прочных».

какой материал крепче алмаза

И здесь многие читатели могут засомневаться. Ведь ещё не так давно даже в школах учили, что твёрже алмаза в природе ничего нет, и эту истину запомнили многие. Но все истины относительны, как говорят философы. Информация о «самом твёрдом алмазе» в наше время также претерпела изменения.

Так что же твёрже алмаза?

Начнём с того, что алмазы также бывают разными по твёрдости. Твёрдость материалов измеряется гигапаскалями (ГПа). Так вот, у разных алмазов этот показатель может варьировать от 70 до 150 ГПа. Согласитесь, разброс весьма существенный! Верхний предел прочности принадлежит так называемым чёрным алмазам, «карбонадо». В природном виде они обнаружены в крайне малых количествах, в Бразилии и Южной Африке.

Если «обычный» алмаз состоит из одного кристалла, то карбонадо — из огромного количества кристаллов углерода, между которыми остаются пустоты. Установлено, что эти алмазы образуются не при высоких давлениях, а при обычных, и находят их только на поверхности Земли. Распространена теория, что карбонадо занесены на нашу планету астероидом, возникшим в результате взрыва сверхновой звезды.

Итак, карбонадо — существенно твёрже «обычного» алмаза, но это всё же алмаз. А есть вещества, которые вовсе не являются алмазами, но твёрже их, и даже твёрже, чем карбонадо. Вот они:

Фуллерит

Это полностью искусственный материал, не встречающийся в природе. Его твёрдость оценена в 310 ГПа. «Карандашик» из этого материала с лёгкостью поцарапает алмазную пластинку. Фуллериты состоят из молекул фуллерена, синтезированного в 1985 году. За это открытие его авторы получили, между прочим, Нобелевскую премию по химии!

какой материал крепче алмаза

Интересно, что долгое время фуллерит был невероятно дорогим и редким веществом, потому что для его синтеза нужны чудовищно высокие давления. Но несколько лет назад российские физики в сотрудничестве с французскими сумели обойти это препятствие. Сейчас вещество уже можно создавать в относительно простых условиях.

Лонсдейлит

Это вещество называют «гексагональным алмазом», потому что оно состоит из графита, только изменённого. В природе очень редко встречается в метеоритных кратерах, но там его твёрдость даже уступает твёрдости карбонадо. Всё дело в примесях, которые обязательно присутствуют в естественных образцах лонсдейлита.

какой материал крепче алмаза

Вюртцидный нитрид бора

Не все учёные считают, что он твёрже алмаза. Иными словами, его третье место пока оспаривается. Дело в том, что в обычном состоянии нитрид бора хоть и очень твёрдый, но всё же относится не к ультра прочным, а к сверхтвёрдым веществам.

какой материал крепче алмаза

Всё меняется, когда на его структуру начинают оказывать давление. Атомарные связи этого вещества устроены так, что при повышении давления они «производят перегруппировку», и вот тогда-то нитрид бора становится твёрже алмаза!

Таким образом, определяя самое твёрдое вещество в мире, мы познакомились с интересными веществами, а заодно избавились от привычного мифа о «самом твёрдом алмазе».

Источник

Топ-25: самые прочные и твердые материалы, известные науке

Окружающий нас мир таит в себе еще множество загадок, но даже давно известные ученым явления и вещества не перестают удивлять и восторгать. Мы любуемся яркими красками, наслаждаемся вкусами и используем свойства всевозможных веществ, делающих нашу жизнь комфортнее, безопаснее и приятнее. В поисках самых надежных и крепких материалов человек совершил немало восторгающих открытий, и перед вами подборка как раз из 25 таких уникальных соединений!

25. Алмазы
какой материал крепче алмаза
Фото: pixabay

Об этом точно знают если не все, то почти все. Алмазы – это не только одни из самых почитаемых драгоценных камней, но и один из самых твердых минералов на Земле. По шкале Мооса (шкала твёрдости, в которой оценка дается по реакции минерала на царапание) алмаз числится на 10 строчке. Всего в шкале 10 позиций, и 10-ая – последняя и самая твердая степень. Алмазы такие твердые, что поцарапать их можно разве что другими алмазами.

24. Ловчие сети паука вида Caerostris darwini
какой материал крепче алмаза
Фото: pixabay

В это сложно поверить, но сеть паука Caerostris darwini (или паук Дарвина) крепче стали и тверже кевлара. Эту паутину признали самым твердым биологическим материалом в мире, хотя сейчас у нее уже появился потенциальный конкурент, но данные еще не подтверждены. Паучье волокно проверили на такие характеристики, как разрушающая деформация, ударная вязкость, предел прочности и модуль Юнга (свойство материала сопротивляться растяжению, сжатию при упругой деформации), и по всем этим показателям паутина проявила себя удивительнейшим образом. Вдобавок ловчая сеть паука Дарвина невероятно легкая. Например, если волокном Caerostris darwini обернуть нашу планету, вес такой длинной нити составит всего 500 граммов. Таких длинных сетей не существует, но теоретические подсчеты просто поражают!

Эта синтетическая пена – один из самых легких волокнистых материалов в мире, и она представляет собой сеть углеродных трубочек диаметром всего в несколько микронов. Аэрографит в 75 раз легче пенопласта, но при этом намного прочнее и пластичнее. Его можно сжать до размеров, в 30 раз меньших первоначального вида, без какого-либо вреда для его чрезвычайно эластичной структуры. Благодаря этому свойству аэрографитная пена может выдержать нагрузку, в 40 000 раз превышающую ее собственный вес.

22. Палладиевое металлическое стекло
какой материал крепче алмаза
Фото: pixabay

Команда ученых их Калифорнийского технического института и Лаборатории Беркли (California Institute of Technology, Berkeley Lab) разработала новый вид металлического стекла, совместивший в себе практически идеальную комбинацию прочности и пластичности. Причина уникальности нового материала кроется в том, что его химическая структура успешно скрадывает хрупкость существующих стеклообразных материалов и при этом сохраняет высокий порог выносливости, что в итоге значительно увеличивает усталостную прочность этой синтетической структуры.

21. Карбид вольфрама
какой материал крепче алмаза
Фото: pixabay

Карбид вольфрама – это невероятно твердый материал, обладающий высокой износостойкостью. В определенных условиях это соединение считается очень хрупким, но под большой нагрузкой оно показывает уникальные пластические свойства, проявляющиеся в виде полос скольжения. Благодаря всем этим качествам карбид вольфрама используется в изготовлении бронебойных наконечников и различного оборудования, включая всевозможные резцы, абразивные диски, свёрла, фрезы, долота для бурения и другие режущие инструменты.

20. Карбид кремния
какой материал крепче алмаза
Фото: Tiia Monto

Карбид кремния – один из основных материалов, используемых для производства боевых танков. Это соединение известно своей низкой стоимостью, выдающейся тугоплавкостью и высокой твердостью, и поэтому оно часто используется в изготовлении оборудования или снаряжения, которое должно отражать пули, разрезать или шлифовать другие прочные материалы. Из карбида кремния получаются отличные абразивы, полупроводники и даже вставки в ювелирные украшения, имитирующие алмазы.

19. Кубический нитрид бора
какой материал крепче алмаза
Фото: wikimedia commons

Кубический нитрид бора – это сверхтвердый материал, по своей твердости схожий с алмазом, но обладающий и рядом отличительных преимуществ – высокой температурной устойчивости и химической стойкости. Кубический нитрид бора не растворяется в железе и никеле даже под воздействием высоких температур, в то время как алмаз в таких же условиях вступает в химические реакции достаточно быстро. На деле это выгодно для его использования в промышленных шлифовальных инструментах.

18. Сверхвысокомолекулярный полиэтилен высокой плотности (СВМПЭ), марка волокон «Дайнима» (Dyneema)
какой материал крепче алмаза
Фото: Justsail

Полиэтилен с высоким модулем упругости обладает чрезвычайно высокой износостойкостью, низким коэффициентом трения и высокой вязкостью разрушения (низкотемпературная надёжность). Сегодня его считают самым прочным волокнистым веществом в мире. Самое удивительное в этом полиэтилене то, что он легче воды и одновременно может останавливать пули! Тросы и канаты из волокон Дайнима не тонут в воде, не нуждаются в смазке и не меняют свои свойства при намокании, что очень актуально для судостроения.

17. Титановые сплавы
какой материал крепче алмаза
Фото: Alchemist-hp (pse-mendelejew.de)

Титановые сплавы невероятно пластичные и демонстрируют удивительную прочность во время растяжения. Вдобавок они обладают высокой жаропрочностью и коррозионной стойкостью, что делает их крайне полезными в таких областях, как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

16. Сплав Liquidmetal
какой материал крепче алмаза
Фото: pixabay

Разработанный в 2003 году в Калифорнийском техническом институте (California Institute of Technology), этот материал славится своей силой и прочностью. Название соединения ассоциируется с чем-то хрупким и жидким, но при комнатной температуре оно на самом деле необычайно твердое, износостойкое, не боится коррозии и при нагревании трансформируется, как термопласты. Основными сферами применения пока что являются изготовление часов, клюшек для гольфа и покрытий для мобильных телефонов (Vertu, iPhone).

15. Наноцеллюлоза
какой материал крепче алмаза
Фото: pixabay

Наноцеллюлозу выделяют из древесного волокна, и она представляет собой новый вид деревянного материала, который прочнее даже стали! Вдобавок наноцеллюлоза еще и дешевле. Инновация имеет большой потенциал и в будущем может составить серьезную конкуренцию стеклу и углеволокну. Разработчики считают, что этот материал вскоре будет пользоваться большим спросом в производстве армейской брони, супергибких экранов, фильтров, гибких батареек, абсорбирующих аэрогелей и биотоплива.

14. Зубы улиток вида «морское блюдечко»
какой материал крепче алмаза
Фото: pixabay

Ранее мы уже рассказали вам о ловчей сети паука Дарвина, которую некогда признали самым прочным биологическим материалом на планете. Однако недавнее исследование показало, что именно зубы морского блюдечка – наиболее прочная из известных науке биологических субстанций. Да-да, эти зубки прочнее паутины Caerostris darwini. И это неудивительно, ведь крошечные морские создания питаются водорослями, растущими на поверхности суровых скал, и чтобы отделить пищу от горной породы, этим зверькам приходится потрудиться. Ученые полагают, что в будущем мы сможем использовать пример волокнистой структуры зубов морских блюдечек в машиностроительной промышленности и начнем строить автомобили, лодки и даже воздушные суда повышенной прочности, вдохновившись примером простых улиток.

13. Мартенситно-стареющая сталь
какой материал крепче алмаза
Фото: pixabay

Мартенситно-стареющая сталь – это высокопрочный и высоколегированный сплав, обладающий превосходной пластичностью и вязкостью. Материал широко распространен в ракетостроении и используется для изготовления всевозможных инструментов.

12. Осмий
какой материал крепче алмаза
Фото: Periodictableru / www.periodictable.ru

Осмий – невероятно плотный элемент, и благодаря своей твердости и высокой температуре плавления он с трудом поддается механической обработке. Именно поэтому осмий используют там, где долговечность и прочность ценятся больше всего. Сплавы с осмием встречаются в электрических контактах, ракетостроении, военных снарядах, хирургических имплантатах и применяются еще во многих других областях.

11. Кевлар
какой материал крепче алмаза
Фото: wikimedia commons

Кевлар – это высокопрочное волокно, которое можно встретить в автомобильных шинах, тормозных колодках, кабелях, протезно-ортопедических изделиях, бронежилетах, тканях защитной одежды, судостроении и в деталях беспилотных летательных аппаратов. Материал стал практически синонимом прочности и представляет собой вид пластика с невероятно высокой прочностью и эластичностью. Предел прочности кевлара в 8 раз выше, чем у стального провода, а плавиться он начинает при температуре в 450℃.

10. Сверхвысокомолекулярный полиэтилен высокой плотности, марка волокон «Спектра» (Spectra)
какой материал крепче алмаза
Фото: Tomas Castelazo, www.tomascastelazo.com / Wikimedia Commons

СВМПЭ – это по сути очень прочный пластик. Спектра, марка СВМПЭ, – это в свою очередь легкое волокно высочайшей износостойкости, в 10 раз превосходящее по этому показателю сталь. Как и кевлар, спектра используется в изготовлении бронежилетов и защитных шлемов. Наряду с СВМПЭ марки дайнимо спектра популярна в судостроении и транспортной промышленности.

9. Графен
какой материал крепче алмаза
Фото: pixabay

Графен – это аллотропная модификация углерода, и его кристаллическая решетка толщиной всего в один атом настолько прочная, что она в 200 раз тверже стали. Графен с виду похож на пищевую пленку, но порвать его – практически непосильная задача. Чтобы пробить графеновый лист насквозь, вам придется воткнуть в него карандаш, на котором должен будет балансировать груз весом с целый школьный автобус. Удачи!

8. Бумага из углеродных нанотрубок
какой материал крепче алмаза
Фото: pixabay

Благодаря нанотехнологиям ученым удалось сделать бумагу, которая в 50 тысяч раз тоньше человеческого волоса. Листы из углеродных нанотрубок в 10 раз легче стали, но удивительнее всего то, что по прочности они превосходят сталь в целых 500 раз! Макроскопические пластины из нанотрубок наиболее перспективны для изготовления электродов суперконденсаторов.

7. Металлическая микрорешетка
какой материал крепче алмаза
Фото: pixabay

Перед вами самый легкий в мире металл! Металлическая микрорешетка – это синтетический пористый материал, который в 100 раз легче пенопласта. Но пусть его внешний вид не вводит вас в заблуждение, ведь эти микрорешетки заодно и невероятно прочные, благодаря чему они обладают большим потенциалом для использования во всевозможных инженерных областях. Из них можно изготавливать превосходные амортизаторы и тепловые изоляторы, а удивительная способность этого металла сжиматься и возвращаться в своё первоначальное состояние позволяет использовать его для накопления энергии. Металлические микрорешетки также активно применяются в производстве различных деталей для летательных аппаратов американской компании Boeing.

6. Углеродные нанотрубки
какой материал крепче алмаза
Фото: User Mstroeck / en.wikipedia

Выше мы уже рассказывали про сверхпрочные макроскопические пластины из углеродных нанотрубок. Но что же это за материал такой? По сути это свернутые в трубку графеновые плоскости (9-ый пункт). В результате получается невероятно легкий, упругий и прочный материал широкого спектра применения.

5. Аэрографен
какой материал крепче алмаза
Фото: wikimedia commons

Известный также как графеновый аэрогель, этот материал чрезвычайно легкий и прочный одновременно. В новом виде геля жидкая фаза полностью заменена на газообразную, и он отличается сенсационной твердостью, жаропрочностью, низкой плотностью и низкой теплопроводностью. Невероятно, но графеновый аэрогель в 7 раз легче воздуха! Уникальное соединение способно восстанавливать свою изначальную форму даже после 90% сжатия и может впитывать такое количество масла, которое в 900 раз превышает вес используемого для абсорбции аэрографена. Возможно, в будущем этот класс материалов поможет в борьбе с такими экологическими катастрофами, как разливы нефти.

4. Материал без названия, разработка Массачусетского технологического института (MIT)
какой материал крепче алмаза
Фото: pixabay

Пока вы читаете эти строки, команда ученых из MIT работает над усовершенствованием свойств графена. Исследователи заявили, что им уже удалось преобразовать двумерную структуру этого материала в трехмерную. Новая графеновая субстанция еще не получила своего названия, но уже известно, что ее плотность в 20 раз меньше, чем у стали, а ее прочность в 10 раз выше аналогичной характеристики стали.

3. Карбин
какой материал крепче алмаза
Фото: Smokefoot

Хоть это и всего лишь линейные цепочки атомов углерода, карбин обладает в 2 раза более высоким пределом прочности, чем графен, и он в 3 раза жестче алмаза!

2. Нитрид бора вюрцитной модификации
какой материал крепче алмаза
Фото: pixabay

Это недавно открытое природное вещество формируется во время вулканических извержений, и оно на 18% тверже алмазов. Впрочем, алмазы оно превосходит еще по целому ряду других параметров. Вюрцитный нитрид бора – одна из всего 2 натуральных субстанций, обнаруженных на Земле, которая тверже алмаза. Проблема в том, что таких нитридов в природе очень мало, и поэтому их непросто изучать или применять на практике.

1. Лонсдейлит
какой материал крепче алмаза
Фото: pixabay

Известный также как алмаз гексагональный, лонсдейлит состоит из атомов углерода, но в случае данной модификации атомы располагаются несколько иначе. Как и вюрцитный нитрид бора, лонсдейлит – превосходящая по твердости алмаз природная субстанция. Причем этот удивительный минерал тверже алмаза на целых 58%! Подобно нитриду бора вюрцитной модификации, это соединение встречается крайне редко. Иногда лонсдейлит образуется во время столкновения с Землей метеоритов, в состав которых входит графит.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *