какой материал используется в солнечных батареях

Как устроена солнечная батарея и принцип ее работы

какой материал используется в солнечных батареях

В этой статье мы рассмотрим устройство солнечной батареи. Современная солнечная батарея представляет собой соединение фотоэлементов, которое может преобразовывать солнечное электромагнитное излучение в электрическую энергию. Ее основными составляющими являются фотоэлементы, от количества которых зависит вырабатываемое напряжение и сила тока. Устройство солнечной батареи основано на явлении внутреннего фотоэлектрического эффекта, которое впервые было открыто ученым Эдмондом Беккерелем еще в 1839 году. В 1873 году другой ученый Уиллоуби Смит заметил такой эффект во время облучения солнечным светом пластины селена. Наибольшее распространение солнечные батареи получили, начиная с середины двадцатого века.

Виды солнечных батарей и их предназначение

В настоящее время используется несколько разновидностей солнечных батарей. Все они отличаются длительным сроком эксплуатации, который зачастую превышает 30 лет. Это достигается за счет отсутствия в конструкции механических компонентов и расходных частей.

Наибольшее распространение сегодня получили три вида фотоэлементов:

Самым распространенным видом являются поликристаллические панели, которые отличаются оптимальным соотношением цены и эффективности. В большинстве случаев их КПД достигает 12-13 %. Эти батареи отличаются кристаллической структурой и синим цветом. Монокристаллические солнечные панели являются более эффективными, так как их КПД достигает 15-16%. Однако, с учетом стоимости одного ватта мощности, их использовании обходиться дороже.

Монокристаллические и поликристаллические батареи имеют схожие функции:

Тонкопленочные обладают самым низким КПД, который не превышает 12%. В то же время, за счет низкой цены фотоэлементов, которые входят в конструкцию, один ватт мощности электроэнергии здесь обходиться дешевле, чем в остальных батареях. К тому же, тонкопленочные панели занимают в 2-3 раза большую площадь, чем моно- и поликристаллические. Поэтому, их лучше использовать для питания крупных систем мощностью более 10 кВт. Интересное: Солнечные батареи на 5 кВт.

Из какого материала изготавливаются солнечные батареи

какой материал используется в солнечных батареях

Наиболее распространенным материалом для изготовления солнечных панелей является кристаллический кремний. Монокристаллический кремний изготавливается по методу Чохральского или тигельным способом. Более простым для изготовления считается поликристаллический кремний, который по структуре представляет собой совокупность кристаллов. Также в качестве материала для изготовления фотоэлементов может использоваться ленточный кремний. Для его производства два тонких слоя кремния накладываются друг на друга. Он более дешевый в изготовлении, но и менее эффективный.

Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

Устройство солнечной батареи: основные элементы

Современное устройство солнечной батареи предусматривает обязательное наличие прочного корпуса, в котором будут размещаться фотоэлементы. Это связано с хрупкостью панелей. Корпус представляет собой коробку небольшого размера с небольшими боковыми ребрами. При этом, ребра не должны мешать солнечному свету попадать на выходы элементов. Размер коробки определяется количеством солнечных элементов. Следующим элементом конструкции является подложка, которая располагается в корпусе прямо на панели. Перед установкой подложки корпус нужно обработать специальными красками, которые имеют стойкость к микроорганизмам и влаге. Кроме того, в корпусе должны быть вентиляционные отверстия, за счет которых будет поддерживаться определенная температура и выводиться газы, которые выделяются при работе батареи в незначительном количестве.

Технология изготовления

Вначале следует спаять фотоэлементы между собой. Если вы купили элементы с металлическими выступами, то тогда можно просто спаять ушки батарей между собой. Делать это нужно очень внимательно и аккуратно. После пайки соединенные компоненты необходимо приклеить к подложке в верхней части панели. Это лучше сделать при помощи специального силиконового клея, который никак не препятствует проникновению солнечных лучей. Кроме того, он способствует нормальному теплообмену. Однако, не переусердствуйте с клеем, так как это может привести к повреждению батарей. Клеить нужно только центр клеток. Далее все элементы нужно соединить с проводом, который подается в одной из заранее предусмотренных вентиляционных отверстий. Для закрепления провода к солнечным элементам лучше использовать силиконовую замазку. Интересное: Солнечная панель своими руками.

На следующем этапе поверх панелей устанавливается оргстекло. Однако, до этого следует подключить диод Шоттки от чувствительных теплопроводящих компонентов. Этот диод послужит блокирующим устройством, которое защитит фотоэлементы при перепадах напряжения. Кроме того, диод Шоттки будет отключать питание системы при маленькой мощности электросети. Так аккумуляторы, заряжаемые от солнца, не будут разряжаться при прекращении питания. Когда диод будет подключен, можно ставить оргстекло и закреплять его винтами. Технология изготовления солнечных панелей является достаточно простой и понятной. Единственное, важно правильно соблюдать последовательность соединения, иначе вся система не будет работать.

Как работает солнечная батарея

какой материал используется в солнечных батареях

Принцип работы солнечной батареи основан на наличии полупроводника в виде двух пластин, соединенных друг с другом. Каждая пластина изготавливается из кремния с использованием дополнительных примесей. Благодаря этому пластины обладают своими уникальными свойствами. Первая из них имеет избыток валентных электронов, а вторая имеет недостаток этих электронов. Эти полупроводники получили название n и p. Если эти полупроводники соединить в единое целое, то можно получить PN-переход в месте контакта между ними. В то время, когда на батарею попадают прямые солнечные лучи, на обеих сторонах этого перехода начинают накапливаться положительные и отрицательные плавающие нагрузки. В результате генерируется напряжение и возникает магнитное поле. Если подсоединить к такому элементу провод, по нему потечет электричество.

Как подключить солнечную батарею

Как только вы изготовите солнечную панель, можно начинать заниматься ее подключением. Можно не подключать ее напрямую к сети, чтобы избежать потерь электроэнергии. То есть, желательно установить автономную систему с аккумуляторами. Они будут заряжаться от солнечных батарей каждый день и быстро разряжаться. При этом, глубина разрядки может быть довольно существенной. Поэтому, аккумуляторы могут быстро выйти из строя. Для того, чтобы этого не произошло, лучше оставить подключение к сети через гибридный батарейный инвертор. Это устройство будет отдавать фотоэлементам приоритет при распределении нагрузки. Инвертор не будет отдавать излишки электроэнергии в сеть, а будет передавать ее на аккумуляторы. Такой вариант является одним из наиболее оптимальных. Эта система состоит из гибридного инвертора, контроллера заряда солнечных панелей и аккумуляторов. Такой механизм сможет работать не только как основная, но и как резервная система электропитания.

Источник

3 основных типа солнечных панелей: что эффективнее и какой вариант подойдёт вам

какой материал используется в солнечных батареях

Сейчас наиболее распространены такие типы солнечных панелей: монокристаллические, поликристаллические и тонкопленочные. Они имеют разный принцип производства, внешний вид, а самое главное — эффективность.

Основные типы солнечных панелей — сравнение

Рассмотрим преимущества и недостатки разных видов.

РазновидностьПреимуществаНедостатки
Монокристаллические• Высокая эффективность.
• Эстетичный внешний вид.
• Высокая стоимость.
Поликристаллические• Низкая стоимость.• Сравнительно невысокая эффективность.
Тонкопленочные• Портативность и гибкость.
• Малый вес.
• Эстетичный внешний вид.
• Сравнительно невысокая эффективность.

Ниже пройдёмся по эффективности и особенностям использования каждого типа.

Из чего сделаны разные солнечные панели

Основой производства фотоэлементов выступает полупроводниковый материал, благодаря которому происходит преобразование солнечной энергии в электрическую. В современных солнечных системах полупроводником чаще всего выступает кремний. Визуально типы солнечных панелей отличаются следующим образом:

какой материал используется в солнечных батареях

Монокристаллические и поликристаллические солнечные панели

В обоих случаях конструкция одинакова: кремниевые ячейки собираются в ряды, формируя прямоугольную конструкцию. Для защиты используется стеклянное покрытие и герметичная рамка.

И там, и там основным материалом является кремний, но качество самого кремния отличается. Монокристаллические элементы вырезаются из цельного кристалла кремния. Для поликристаллических используют небольшие фрагменты кремния, которые переплавляют и прессуют в форме ячеек.

какой материал используется в солнечных батареях

Тонкопленочные солнечные панели

В этом случае основой для производства служит аморфный кремний (a-Si) — некристаллическая версия кремния. Его соединение особым образом «напыляется» на гибкую основу, которая собирается в гибкую панель.

Сейчас в производстве тонкоплёночных моделей чаще всего используется теллурид кадмия (CdTe). Это поколение гибких панелей существенно отличается по эффективности от аморфных кремниевых предшественников.

Панели из селенида меди, индия, галлия (CIGS) также являются представителями тонкоплёночных технологий, но встречаются не так часто.

Мощность и эффективность солнечных панелей

Качество материала и конструктивные особенности значительно влияют на производительность.

Эффективность монокристаллических и поликристаллических солнечных панелей

Из всех вариантов монокристаллические имеют самый высокий КПД и мощность. Их эффективность может превышать 20%, в то время как поликристаллические обычно имеют показатели 15-17%.

Большинство стандартных монокристаллических солнечных панелей достигают мощности более 300 Вт, а некоторые могут превышать 400 Вт. Поликристаллические в среднем производят 200 Вт, хотя дорогие модели могут превышать и 300 Вт.

Оба типа солнечных панелей поставляются с 60, 72 и 96 кремниевыми ячейками. Но при равном количестве ячеек монокристаллические системы способны производить больше электроэнергии.

Эффективность тонкоплёночных солнечных панелей

Гибкие полимерные устройства ощутимо уступают по мощности кристаллическим аналогам. С учётом использования передовых полупроводников КПД достигает 11%.

Как тип солнечной панели влияет на её стоимость

Цены различаются из-за материала, который используется для производства солнечных элементов, и способа его обработки.

Монокристаллические солнечные панели — самый дорогой вариант

Производство таких фотоэлементов предполагает выращивание цельных кристаллов кремния. Этот процесс, известный как метод Чохральского, достаточно энергоемкий и иногда проходит неудачно. Повреждённые заготовки могут быть использованы для поликристаллических элементов.

Поликристаллические солнечные панели — ощутимо дешевле

Здесь процесс создания фотоэлементов намного проще в технологическом плане. Не нужно тратится на обработку цельных кристаллов — мелкие фрагменты просто плавятся и прессуются в формы. Это дешевле для производителя, а следовательно и для потребителя.

Тонкопленочные солнечные панели — всё зависит от материала

Сколько вы заплатите за тонкопленочные элементы, во многом будет зависеть от материала, который был использован для их производства. Дешевле всего обойдутся панели из CdTe и аморфного кремния, в то время как вариант из CIGS будет ощутимо дороже.

Нужно учитывать, что общая стоимость установки гибких солнечных панелей может быть ниже, чем монтаж монокристаллических или поликристаллических систем. Они легче и практичнее, что упрощает монтажникам возможность доставлять панели на крышу и закреплять их на месте. Это позволяет снизить затраты на рабочую силу.

какой материал используется в солнечных батареях

Так что же выбрать?

Монокристаллические, поликристаллические и тонкопленочные панели имеют свои преимущества и недостатки, и обычно решение о выборе того или иного варианта зависит от особенностей помещения и от уровня потребности домохозяйства в электроэнергии.

Владельцы недвижимости с большой площадью под солнечную электростанцию могут сэкономить, установив менее эффективные и недорогие поликристаллические панели. Если у вас ограниченное пространство, лучшим вариантом будет установка высокоэффективных монокристаллических модулей.

Тонкоплёночные панели обычно устанавливают на просторную крышу коммерческих/промышленных помещений, которые не могут выдержать дополнительный вес традиционного солнечного оборудования. Кроме того, тонкопленочные панели иногда могут быть идеальным решением для портативных солнечных систем, например, на жилых автофургонах или лодках.

Все типы солнечных панелей имеют свои особенности производства, что влияет на их итоговую эффективность. Лучший КПД у монокристаллических, но если у вас достаточно места под солнечную систему, можно установить поликристаллические и сэкономить на расходах. Тонкоплёночные имеют самую низкую производительность, но удобны при монтаже.

Источник

Из чего делают солнечные батареи: особенности строения различных поколений панелей

До недавних пор на вопрос «из чего делают солнечные батареи» существовал всего один ответ – из кремниевых ячеек в жесткой раме с толстым защитным стеклом. Сегодня ситуация кардинально изменилась, хотя панели на основе кремния по-прежнему занимают большую часть мирового рынка. При изготовлении фотовольтаики дома, из подручных материалов, такие ячейки также применяются чаще других. Однако перспективные разработки последних лет создаются на совершенно иных технологиях и значительно отличаются от старых моделей конструктивно.

Краткая история модифицирования: три поколения солнечных батарей

Специалисты разделяют все фотоэлектрические устройства, способные поглощать световые фотоны и преобразовывать их в электрический ток, на три поколения.

Конструктивно такие модули состоят из следующих элементов:

Толщина монокристаллических Mono-Si или поликристаллических Poli-Si кремниевых пластин в ячейках составляет около 200-300 мкм. Срок службы оценивается в 20-25 лет, с падением производительности в среднем на 0,5% ежегодно. КПД при идеальных условиях освещения достигает 22-24% и резко снижается при высоких температурах либо частичном падении освещенности.

2. Из чего сделаны солнечные батареи второго поколения

Следующее поколение батарей использует тот же физический принцип p/n перехода, однако создано на базе комбинаций редкоземельных элементов (реже – аморфного кремния). Вспомогательные конструкционные элементы панелей в большинстве случаев те же – металлическая основа, антиотражающая пленка и защитное стекло. Однако все чаще появляются и безрамные конструкции, а также тонкопленочные варианты, способные сворачиваться в рулоны и изгибаться под любыми углами.

Наиболее частыми полупроводниками для ячеек таких батарей служат:

Иногда на предложение привести примеры, из чего делают солнечные батареи тонкопленочного типа, профильные специалисты приводят и другие, более экзотические варианты. Однако их совокупная доля не превышает 0,1% и используется преимущественно в лабораторных исследованиях.

Название «тонкопленочные» происходит от значительно меньшей толщины рабочих слоев – от 1 до 3 мкм, что почти в 100 раз меньше, чем у кремниевой «классики». КПД при идеальных условиях тонких пленок составляет 16-20%. Однако при рассеянном свете и/или больших углах падения излучения панели CdTe / CIGS могут быть более эффективны.

3. Из чего состоит солнечная батарея третьего поколения

Принцип действия панелей 3-го поколения по-прежнему фотоэлектрический, но конструкция принципиально иная. Полупроводниковые материалы в них, за исключением квантовых точек, не используются вовсе, уступая место органике и полимерам.

Такие батареи часто не имеют ни рамы, ни защитного стекла, печатаются на 3D-принтерах либо изготавливаются методом травления, подобно компьютерным платам.

Главное их достоинство – фантастическая дешевизна производства, широчайшие возможности геометрии и прозрачность. Третье поколение – это панели ближайшего будущего, которые будут повсеместно встраиваться в дома, окна, одежду и даже мельчайшие бытовые предметы.

Основной недостаток на сегодня – низкий КПД, составляющий от 0,1 до 7%.

Полупроводниковые материалы – из чего делают солнечные батареи сегодня

Основными полупроводниковыми материалами, которые используются для производства 99% фотоэлектрических ячеек на современном мировом рынке, являются:

Такая модификация носит название уже не аморфного, а микроморфного кремния и показывает КПД до 12%. Низкая эффективность компенсируется дешевизной производства, поскольку на такие ячейки элементов требуется в 200 раз меньше полупроводника чем для Mono-Si или Poli-Si.

4. Из чего сделаны тонкопленочные солнечные батареи CdTe

Теллурид кадмия считается лучшим однопереходным полупроводниковым материалом по совокупности трех показателей – поглощающая способность, надежность, стоимость. CdTe значительно производительнее кремния и намного дешевле более эффективных пленок на базе дорогостоящих германия и индия.

Подложка пленки может быть не металлической, а стеклянной, а сами ячейки – полужесткими или гибкими. CdTe отличается стабильностью, долговечностью, малой чувствительностью к изменению освещения и быстро растущим КПД новых поколений модулей.

5. Особенность строения солнечных панелей типа CIGS

Основой батарей на сульфидах редкоземельных элементов является композитное смешение галлия, индия и меди. Такие панели являются «чемпионами» по КПД и стойкости, но стоят очень дорого.

Коммерческое применение пока ограничено только космосом и авиационной отраслью, поскольку добыча индия и галлия на планете ограничена всего несколькими сотнями тонн в год. Даже если бы все они пошли на изготовление батарей, общая мощность панелей едва достигла бы 10 ГВт.

6. Из чего состоят солнечные батареи типов GaAs и InP

Базовыми редкоземельными элементами этой группы панелей служат арсенид галлия GaAs и фосфид индия InP. Отличительная черта обоих вариантов ячеек – практически полное сохранение КПД при температурах в несколько сотен градусов Цельсия.

Применение их на земле финансово нецелесообразно, но практически все солнечные панели космических спутников, зондов, МКС и телескопов сделаны именно на их основе. Теоретический КПД этой группы, при условии использовании в конструкции дополнительных концентраторов, может достигать 85%. Практические рекорды сегодня колеблются в зоне 35-45%.

7. Из чего делают органические солнечные батареи

Несмотря на низкий КПД (лабораторный рекорд на сегодня – 10,8%, коммерческие прототипы – до 7%) панели на органической основе 3-го поколения сегодня активно исследуются. Для полимеров органического происхождения характерны следующие важные черты:

Подобные панели практически невесомы, а при использовании технологии «tandem solar batteries» (тандемное соединение) их можно встраивать в окна и регулировать прозрачность.

8. Из чего состоят солнечные батареи на красителях

Конструктивно в них присутствует тонкая стеклянная подложка и напыляемая токопроводящая «краска». Ее основой является нанокристаллические «катод» и «анод», а также неагрессивный электролит – например, диоксид титана. Удобство использования состоит в возможности получения любых цветовых оттенков и нанесения на любые поверхности сверхтонким слоем.

9. Особенности солнечных батарей с квантовыми точками

Последний перспективный вид батарей ближайшего будущего построен на свойствах физических квантовых точек – микроскопических включений полупроводников в тот или иной материал. Геометрически такие «точки» имеют размер в несколько нанометров и распределяются в материале так, чтобы охватить поглощение излучения всего солнечного спектра – ИК, видимого света и УФ.

Огромным преимуществом подобных панелей является возможность работать даже ночью, генерируя около 40% максимальной дневной мощности.

Физико-технические характеристики, сертификация и маркировка

Независимо от того, из чего сделаны солнечные батареи, каждая из них обладает рядом следующих важных характеристик:

Промышленные солнечные панели, из каких бы материалов они не были сделаны, обязательно должны быть сертифицированы. Минимальными требованиями являются сертификаты качества ISO, СE, TUV (международные) и/или Таможенного союза (при продаже в его пределах).

Обязательной является и международные правила маркировки. Например, аббревиатура CHN-350M-72 содержит следующие сведения:

Из чего можно сделать солнечные батареи своими руками дома

Для этого необходимо следующее:

Небольшая батарея потребует около 30-50 долларов вложений, в то время как заводской вариант аналогичной мощности обойдется всего на 10-20% дороже. Разумеется, подобная самодельная конструкция не прослужит 25 лет, не будет обладать мощностью полноценной солнечной электростанции и не сможет похвастаться значительным КПД. Однако стоимость ее будет минимальной настолько, насколько это возможно.

Источник

Как выбрать солнечную панель: виды батарей и основные нюансы выбора

Думая об установке солнечных панелей, большинство людей в первую очередь рассматривают такие факторы, как стоимость, эстетика и энергоэффективность. Хотя это важные аспекты, гораздо важнее выбрать подходящий вам тип солнечных батарей. От этого во многом будет зависеть стоимость оборудования и работ по установке, а также то, как панели будут выглядеть на вашей крыше.

Существует три типа солнечных батарей, и у каждого есть свои плюсы и минусы. Правильный выбор будет зависеть от конкретной ситуации и того, что именно вы хотите получить.

Основные типы солнечных панелей

Существуют монокристаллические, поликристаллические и тонкопленочные солнечные панели. Особенности технологии производства и конструктивного исполнения обуславливают визуальные отличия и характеристики каждого типа устройств.

Монокристаллические

какой материал используется в солнечных батареях

Монокристаллические солнечные панели — самый старый и наиболее распространённый тип подобных устройств. Такие батареи состоят из примерно 40 монокристаллических солнечных элементов. Фотоэлектрические компоненты изготавливаются из чистого кремния.

В процессе производства (чаще всего используется метод Чохральского) кристаллический кремний помещается в чан с расплавленным кремнием. Затем кристалл очень медленно вынимается из чана, позволяя расплавленному веществу образовывать твёрдую кристаллическую оболочку, называемую слитком. Далее слиток тонко нарезают на кремниевые пластины.

Пластины превращаются в отдельные элементы, а затем элементы собираются и формируются в солнечную панель.
Монокристаллические солнечные батареи кажутся чёрными из-за того, как солнечный свет взаимодействует с чистым кремнием. Хотя ячейки имеют чёрный цвет, задние листы и рамы могут быть выполнены в различных цветах и отличаться по дизайну. Фотоэлектрические ячейки таких панелей имеют форму квадрата со скруглёнными углами, поэтому между ними есть небольшие зазоры.

Поликристаллические

какой материал используется в солнечных батареях

Поликристаллические солнечные панели — новая разработка, но их популярность и эффективность быстро растут. Как и монокристаллические ячейки, они изготавливаются из кремния. Но в поликристаллическом варианте фотоэлектрические элементы состоят из расплавленных вместе фрагментов кристалла кремния.

В процессе производства кристалл кремния помещается в ёмкость с расплавленным кремнием. Затем, вместо того, чтобы вытаскивать его медленно, кристаллу дают возможность фрагментироваться, а затем остыть. Как только новый кристалл охладится в своей форме, фрагментированный кремний тонко разрезается на поликристаллические солнечные пластины.

Поликристаллические ячейки имеют синий цвет из-за специфической структуры. Солнечный свет отражается от кремниевых фрагментов иначе, чем от цельного кремниевого элемента. Обычно задние рамки и оправы изготавливаются из серебра с поликристаллическим покрытием, но возможны вариации. Форма ячейки — квадрат, между углами ячеек отсутствуют зазоры.

Тонкоплёночные

какой материал используется в солнечных батареях

Тонкоплёночные солнечные панели — это инновационная технология, появившаяся всего несколько лет назад. Главной особенностью является то, что такие батареи не всегда сделаны из кремния. Они могут быть изготовлены из различных материалов, включая теллурид кадмия (CdTe), аморфный кремний (a-Si) и селенид меди, индия, галлия (CIGS).

Эти солнечные батареи создаются путём помещения основного материала между тонкими листами проводящего материала, покрытого слоем стекла для защиты. В панелях a-Si используется кремний, но они используют некристаллическую форму вещества и также покрываются стеклом.

Тонкоплёночные панели легко идентифицировать по их внешнему виду. Эти солнечные батареи примерно в 350 раз тоньше тех, в которых используются кремниевые пластины. Но иногда тонкоплёночные ячейки могут быть большими, и это может сделать внешний вид всей солнечной системы сравнимым с монокристаллической или поликристаллической системой. Тонкоплёночные элементы могут быть чёрными или синими, в зависимости от материала, из которого они сделаны.

Сравнение солнечных панелей разных типов

Помимо отличий в технологии производства и дизайне, есть некоторые различия и в том, как работают разные типы солнечных элементов. Ключевые аспекты — эффективность и цена.

Эффективность

Эффективность определяет то, сколько электричества солнечная панель может произвести за счёт количества получаемого ею солнечного света.

Самыми эффективными считаются монокристаллические панели. Их КПД может достигать 20% и более. С другой стороны, у поликристаллических аналогов этот показатель колеблется в диапазоне от 15 до 17%. Этот разрыв между двумя панелями может сократиться в будущем по мере совершенствования технологий, позволяющих сделать поликристаллические панели более эффективными.

Наименее эффективный тип солнечных панелей — тонкоплёночные. Они обычно имеют более низкий КПД и производят меньше электроэнергии, чем любой из кристаллических вариантов, с КПД всего около 11%. Мощность таких панелей может варьироваться, потому что у них нет стандартного размера.

Стоимость

Цена может существенно повлиять на принятие решения о выборе солнечных панелей. Наиболее доступными являются тонкоплёночные панели, потому что они могут быть изготовлены с наименьшими затратами. CdTe — самые дешёвые солнечные батареи на рынке, CIGS немного дороже.

Рамы тонкоплёночных батарей обычно легче, поэтому можно сэкономить и на монтажных расходах. С другой стороны, монокристаллические солнечные панели сейчас являются самым дорогим вариантом. Производство чистого кремния может быть дорогостоящим, а панели и рамы отличаются большим весом, что приводит к более высоким затратам на установку.

Поликристаллические панели были разработаны для снижения стоимости солнечных панелей, и они обычно более доступны, чем монокристаллические.

какой материал используется в солнечных батареях

Какой тип солнечных батарей лучше?

Лучший тип солнечных панелей зависит от назначения панелей и места их установки. Для жилых домов с большой площадью кровли или недвижимости оптимальным выбором могут быть поликристаллические панели. Эти устройства являются наиболее доступными для больших помещений и обеспечивают достаточную эффективность и мощность.

Для жилых домов с меньшими площадями монокристаллический материал может быть лучшим выбором. Такие панели хорошо подходят для тех, кто хочет максимизировать использование чистой энергии в небольшом пространстве.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *