какой магнит сильнее неодимовый или ферритовый
Ферритовые магниты vs. неодимовые в акустических системах: что эффективнее?
Вот, пишут, например:
«. срок службы магнита или количество времени, в течение которого магнит сохраняет свои магнитные характеристики. Неодимовый магнит теряет порядка 1% в течение 100 лет, в то время, как ферритовый магнит уже через 8-10 лет полностью теряет свои магнитные свойства и становится обычным куском железа. ».
Получается, что акустика на ферритовых магнитах через 8-10 лет становится мягко говоря не соответствующей своим изначальный параметрам? В отличие от акустики на неодимах?
Ответы
На работе померял теслометром напряженность вектора магнитной индукции в зазоре разобранного старого 10ГД-30б динамика 1984 года, там около 0.8 Тл. Может и больше, просто зонд теслометра туда не совсем пролезает. По паспорту у него в новом виде должно быть 0,90-0,95. Феррит только от тепла деградирует, от комнатной заметно не стареет.
В производстве у нас используются магниты неодимовые для специальных применений с повышенной термостойкостью до 120гр С марки N48H до 4,5 Тл. Такие же в винчестерах HDD, по-моему, используют. Думаю в динамиках такие не встретить, так как они в 2-3 раза дороже обычных до 80гр С.
Сейчас у нас ходят слухи, что у монопольных в этом деле китайцев появились неодимовые магниты до 7 Тл. Слухи проверяем, производителя ищем, есть мнение, что пока гражданским это недоступно, и всё семерки идут на двигатели постоянного тока для беспилотников и подводных лодок КНР. С аудиофильской точки зрения доступность таких магнитов могла бы ещё раз встряхнуть аудиоиндустрию.
Эх, попробовать бы ещё платиновые. Не приходилось работать с такими?
Чем отличается неодимовый магнит от обычного
Едва ли найдется человек, который в детстве не играл с магнитами. Практически в каждом образовательном учреждении их используют для закрепления материала на доске. Кроме того, магниты являются элементами сложных систем: их используют при производстве двигателей, генераторов, различных электронных приборов, а также в изготовлении детских игрушек и сувениров.
Особенности неодимовых магнитов
Чтобы понять особенности неодимовых изделий, их нужно сравнить с обыкновенными магнитами. Они отличаются повышенной силой сцепления, а изготавливают их из сплава железа, бора и неодима. Благодаря своим характеристикам, неодимовые магниты вытесняют ферритовые магниты.
Для выяснения отличий необходимо сфокусировать внимание на нескольких ключевых моментах в:
По первому пункту, конечно, лидируют неодимовые магниты. Если взять 2 магнита, у которых идентичные размеры, то сила сцепления неодимового изделия будет примерно в 10 раз больше. Также неодимовые магниты лидируют и по другим показателям, например магнитной энергии.
Что касается сроков эксплуатации, то важно исследовать количество времени, в течении которого изделие сохраняет свои полезные свойства. Исходя из данных исследований, можно констатировать, что неодимовый магнит теряет около 1% силы сцепления за 100 лет. Ферритовый аналог полностью теряет свои магнитные свойства примерно за 9 лет.
При сравнении изделий по последнему пункту также заметно преимущество неодимовых магнитов. Любые формы и размеры изделий сохраняют магнитные свойства. В то же время ферритовые магниты производили в форме подков, чтобы как можно дольше сохранить магнитные свойства, что снижало спектр их применения.
Сферы применения и преимущества неодимовых магнитов
Неодимовые магниты теряют напряженность магнитного поля значительно медленнее, чем это происходит у ферритовых изделий. Однако они стоят дороже, но в перспективе их приобретение приведет к финансовым выгодам из-за продолжительного срока эксплуатации.
Допустимо привести несколько примеров использования неодимовых магнитов в бытовых условиях:
безопасная игрушка для детей и взрослых;
различные варианты украшения помещения;
закрепление ножей на стенке кухни;
надежная фиксация жалюзи на балконе.
Само собой разумеется, представленный перечень использования не является полным. Неодимовые магниты представлены в разных вариантах исполнения, что позволяет выбрать их под конкретные цели.
Подводя итоги, неодимовые магниты по всем фронтам опережают ферритовые аналоги. Этим и объясняется быстрая популяризация подобных изделий и вытеснение с рынка устаревших аналогов.
Неодимовые магниты оптом купить бывает необходимо купить в трех случаях: Если вы предприниматель, производящий на их основе свою продукцию Если вы владелец магазина инструментов и скобяных т..
Неодимовые магниты отличаются невероятной силой притяжения. Чем больше магнит, тем выше его мощность. Именно это качество позволяет использовать их во многих отраслях. Однако, если такой магнит примаг..
Для чего человеку может понадобиться неодимовый магнит 50х30 купить в Москве который предлагает множество компаний?Да для чего угодно!Маленький компактный диск, создающий мощное постоянное магнитн..
Как рассчитать силу магнита?
Сила магнита рассчитывается, в первую очередь, исходя из его массы. То есть, чем больше масса магнита, тем больше его сила, так называемая, сила на отрыв.
Обращаем внимание на то, что сила на отрыв измеряется в единицах килограмм-сила. Сила на отрыв не измеряется просто в килограммах.
Тангенциальная составляющая силы
Физические характеристики или класс магнита
Во-вторых, сила на отрыв рассчитывается исходя из физических характеристик магнита. Например, магнит класса N45 сложнее оторвать от поверхности, чем магнит таких же размеров класса N35. Это связано с магнитной энергией магнита: чем она выше (энергия), тем сложнее оторвать магнит от поверхности.
Рассмотрим пример на магните размером 30*10 мм. Сила на отрыв такого магнита классом N35 от стального листа составляет 17,87 кг/с (или просто килограмм). Сила на отрыв такого же магнита от стального листа, но уже классом N45, составляет 22,92 кг/с. То есть разница составляет 28%!
Система, в которую помещен магнит
В-третьих, попробуем рассмотреть силу на отрыв магнита, помещенного между двумя стальными листами (схематично, лист-магнит-лист). В этом случае, мы будем отрывать один из листов от магнита (второй лист надежно закреплен).
Рассмотрим тот же пример, магнит 30*10 мм. Чтобы оторвать лист от магнита классом N35, нам потребуется сила 30,55 кг/с. Для класса N45 эта величина составит и вовсе рекордные 39,28 кг/с. Делаем вывод: сила на отрыв рассчитывается исходя из системы характеристик, в которую помещен магнит.
Площадь соприкосновения
Если же Вам достаточно теоретических расчетов, то каждая карточка магнита имеет информацию о массе и силе на отрыв. Удачных покупок!
Что такое аксиальная намагниченность?
Что такое диаметральная намагниченность?
Что такое радиальная намагниченность?
Что значит «класс» магнита?
В первую очередь, неодимовые магниты делят на классы, которые обозначаются буквами и числами (например, N35), в которых и заложена основная информация о магните. Ознакомиться с таблицей физических характеристик неодимовых магнитов Вы можете здесь.
Основное классовое отличие магнитов – это их рабочая температура использования, то есть та допустимая максимальная температура, превышая которую магнит начинает терять свои магнитные свойства. Таким образом, на температурный диапазон использования магнита указывает буквенная часть его маркировки. Дадим расшифровку этих букв:
Стоит оговориться, что отрицательные температуры не оказывают влияния на магнитные свойства для большинства магнитов.
Цифры, указанные в обозначении класса магнитов: N30, 33M, 35H, 38SH, 40UH и т.д., указывают на Магнитную Энергию, измеряется в килоДжоуль на кубический метр. Этот критерий магнитов отвечает за их мощность или, так называемое, «усилие на отрыв», то есть сила, которую необходимо приложить к магниту, чтобы его «оторвать» от поверхности. Необходимо понимать, что поверхность (стальной лист) должен быть идеально ровным, а приложенная сила должна быть перпендикулярной к листу. Это, так называемые, идеальные или теоретические условия. Чем выше цифровое обозначение магнита, тем выше его усилие на отрыв.
Сила на отрыв магнита, и как ее рассчитать
Но, кроме того, «сила на отрыв» зависит не только от физических характеристик магнита, но и от его размера и веса. Например, магнит 25*20мм легче оторвать от стального листа, чем магнит 40*5 мм, так как площадь соприкосновения у второго магнита больше (25 мм против 40 мм). Но линии магнитного поля, если их визуализировать, распространяются у первого магнита (25*20 мм) «дальше», значит и «цепляется» за стальной лист он крепче.
На весь товар оплаченный с сайта в рублях с помощью банковских карт действует дополнительная скидка в 10%!
Скидка суммируется со всеми действующими скидками на товары. Также вы можете списывать бонусы за данные заказы по нашей программе лояльности.
Обращаем внимание, что скидка действует только на товар и не распространяется на доставку.
Уважаемые клиенты!
Начиная со второго заказа в нашем интернет-магазине, вы сможете оплатить бонусами весь заказ (или его часть)! Количество бонусов численно равно количеству рублей, которые вы можете использовать при оплате покупки.
Правила начисления бонусов для постоянных клиентов
Когда вы совершаете второй или третий заказ, наши бонусы начисляются вам следующим образом:
Сумма заказа | Количество бонусов |
Менее 500 руб. | 25 бонусов |
От 501 до 1000 руб. | 50 бонусов |
От 1001 до 3000 руб. | 75 бонусов |
От 3001 руб. и более | 100 бонусов |
Начиная с четвертого заказа вам присваивается почетный статус, в соответствии с которым будут начислены бонусы за выполненные заказы:
Количество заказов | Количество начисленных бонусов |
Четвертый заказ | 4% от суммы покупки |
Пятый заказ | 5% от суммы покупки |
Шестой заказ | 6% от суммы покупки |
Седьмой заказ | 7% от суммы покупки |
Восьмой заказ | 8% от суммы покупки |
Девятый заказ | 9% от суммы покупки |
Десятый заказ и последующие заказы | 10% от суммы покупки |
Общие правила предоставления скидок
Желаем вам приятных покупок в нашем интернет-магазине! Спасибо, что вы с нами!
О магнитах – альнико, феррит, кобальт, неодим
При выборе материала для постоянного магнита встают четыре основных вопроса:
На сегодняшний день существует много материалов, используемых при изготовлении постоянных магнитов. Альнико, ферриты (керамика), самарий-кобальт, неодим-железо-бор, железо-хром-кобальт и материалы в виде смеси магнитного порошка и какой-либо связующей компоненты. Рассмотрим основные преимущества и недостатки каждого из вышеперечисленных материалов.
Альнико
Альнико или сплав ЮНДК — ферромагнитный сплав, один из старейших магнитных материалов. Его получают литьём, из порошков и горячей деформацией слитка. Состав сплава: Fe = 53%; Al = 10%; Ni = 19%; Co = 18%. Альнико обладает высокой коррозионной устойчивостью, большим значением Br (сила магнитного поля) и стабильностью при высоких температурах (до 550 °C). Возможность формирования в материале магнитного поля большой кривизны.
У него может быть очень высокая остаточная намагниченность Br, изменяющаяся от 6700 до 13500 Г. Температура Кюри (температура, при которой материал полностью теряет свои магнитные свойства) у этого материала примерно 840 0 С, температурная стабильность данного материала очень высока. Температурный коэффициент индукции и других магнитных характеристик составляет 0,02 %/ 0 С, меньше чем у многих других доступных материалов.
Один из недостатков Альнико – определённая трудность использования в составе изделия. Альнико – очень жесткий и хрупкий материал. Он может быть обработан только полированием, шлифованием или электроэрозионной обработкой. У Альнико низкая коэрцитивная сила, изменяющаяся в пределах 0,64 – 1,9 кЭ.
Феррит (керамика)
Феррит – самый дешёвый магнитный материал. У этого материала умеренно высокие значения коэрцитивной силы Hcb и Hci (от 2,500 до 4,000 Гс), что значительно выше, чем у Альнико. Его электрическое сопротивление также очень высоко. Когда мы думаем о керамических материалах, мы думаем о диэлектриках, тогда как практически все магнитные материалы имеют умеренную электрическую проводимость. Ферриты с успехом используются в тех случаях, когда необходимы относительно хорошие магнитные характеристики материала. Главное же достоинство ферритов – их низкая цена. Не следует также забывать о высокой химической стабильности к окислению, позволяющей ферритам сохранять свои свойства и внешний вид без всякого покрытия в течение десятилетий.
К недостаткам ферритовых материалов можно отнести умеренно низкую температуру Кюри (около 450 0 С), а также низкую температурную стабильность. Температурный коэффициент ферритовых материалов составляет 0,2 %/ 0 С, т.е. они в 10 раз менее стабильны, чем альнико.
Самарий-кобальт
Материал самарий-кобальт (SmCo) впервые был использован в конце 70-х годов в Дэйтонском университете в рамках одного из проектов ВВС США. Энергия магнитного поля этого материала оказалась значительно более высокой, чем у альнико, а температурная стабильность – просто превосходной.
Как магниты, широко используются в оборонной промышленности. Достоинства магнитов SmCo включают в себя высокие остаточную намагниченность Br (до 11,5 кГ), коэрцитивную силу Hci(от 5.5 до 25 кЭ) и высокую температуру Кюри.
Существует две марки SmCo:
Из двух сплавов – 1:5 и 2:17 – менее дорогим (на 10-15%) является сплав 2:17, поскольку в нем небольшая часть используемого кобальта замещена железом, и содержание самария также меньше, чем в чистом сплаве 1:5. Выпуск магнитов из сплава 2:17 пока на 50% выше, чем из сплава 1:5. Разработанные из сплава 2:17 магнитные системы имеют большую магнитную энергию, при этом сплав 2:17 производит ту же работу, что и сплав 1:5, и имеет меньшую стоимость. Второй существенный недостаток материала SmCo – это его хрупкость. Заказчикам обычно советуют иметь магниты SmCo с фасками радиусом скругления 0,004 дюйма.
Магниты SmCo имеют очень хорошую температурную стабильность 0,035 %/ 0 С, их температурный коэффициент индукции чуть больше, чем у альнико. Они также обладают достаточно высоким значением энергетического произведения (BH)max на единицу объёма ((BH)max изменяется в пределах от 16 до 30 МГ*Э).
Недостатками магнитов SmCo являются их высокая стоимость и хрупкость. Это самый дорогой из имеющихся магнитных материалов. Высокая цена материала определяется использованием в нём дорогих редкоземельных металлов. В частности, технология очистки самария достаточно дорога, так же, как и кобальта, который широко используется в производстве сталей высоких марок.
Неодим-железо-бор
Научные исследования нового магнитного материала – неодим-железо-бор (NdFeB) – начались с 80-х годов прошлого века, а его широкое применение в промышленности – с 1984 года. Производители искали магнитный материал, который обладал бы такой же магнитной энергией, как SmCo, но имел существенно более низкую стоимость. Было установлено, что у сплавов NdFeB очень высокое энергетическое произведение – вплоть до 50-55 MG*Oe – при значительно меньшей цене, чем цена SmCo.
Магниты NdFeB имеют меньшую температурную стабильность, чем магниты SmCo – их температурный коэффициент магнитной индукции изменяется от 0,07 до 0,13 %/ 0 С (сравните с 0,035 %/ 0 С у кобальтовых). Вследствие этого при температурах более 180 0 С магниты SmCo могут создавать большие значения магнитного поля, чем магниты NdFeB.
Материал NdFeB очень сильно подвержен коррозии, поэтому его покрывают цинком, никелем, медью или комбинацией этих материалов. Кроме того, во избежание возникновения химически нестабильных соединений в структуре сплава процесс изготовления проводится в отсутствие воздуха. Так же неодимовый магнит имеет низкую температуру Кюри – примерно 310 0 С, которая может быть повышена добавлением кобальта. Однако, как отмечалось ранее, использование кобальта вместо железа ведет к удорожанию материала.
В настоящее время магниты NdFeB очень широко используются в двигателях электроприводов в компьютерной технике благодаря своим высоким энергетическим магнитным характеристикам. Примерно 60% использующегося в промышленности магнитного материала NdFeB применяется в приводах компьютерных дисков.
Подверженность коррозии NdFeB вынуждает наносить на магниты покрытие. Окраска, покрытие эпоксидной смолой хороши в качестве защиты от окисления, но добавляют лишний слой между магнитом и другими частями изделия. Этот слой вызывает дополнительное магнитное сопротивление в цепи, подобно сопротивлению в электрической цепи. Покрытия никелем и цинком наиболее выгодны из-за возможности нанесения слоя очень малой толщины. Никель особенно эффективно защищает магнит от воздуха и влажности благодаря своей герметичности. Кроме того, это один из наиболее дешевых методов защиты от окисления. Как правило, толщина покрытия никелем не превышает 15-20 мкм.
В настоящее время магниты NdFeB доступны с присадками из различных материалов, такими как диспрозий, кобальт, ниобий, ванадий, галлий и т.д. Добавление данных химических элементов ведет к улучшению стабильности магнита с температурной и коррозионной точек зрения. Эти модифицированные магниты могут быть использованы до температур +220 0 С. Для успешного использования при повышенных температурах дизайн магнитной цепи должен быть оптимизирован с точки зрения минимизации процессов размагничивания при высоких температурах.
Магнитопласты
Магнитопласты изготавливаются посредством смешения магнитного порошка и какой-либо связующей компоненты. В качестве связующего вещества могут применяться каучук, акрил, полиамид, термопластик, пластик, винил, эпоксидная смола, PPS и др.
Магнит изготавливается из смешанной массы следующими способами:
Магнитопласты обладают физическими свойствами, типичными для связующего материала. Каучуковый магнитопласт гибкий, не крошится и не ломается. Магнитопласты на основе эпоксидной смолы имеют хорошее сопротивление воздействию масел, бензинов и обычных растворителей.
Основные органические связующие материалы имеют следующие характерные особенности:
Правильный выбор связующего материала может минимизировать негативные эффекты. Латунь, алюминий, сталь и даже высокотемпературные пластики могут быть использованы в процессе прессования магнитопластов, когда магнитные соединения формируются за счет перемешивания магнитного порошка и связующей компоненты. Одновременная добавка в форму для литья двух компонент позволяет изготовить продукт, содержащий два различных материала. Это могут быть два магнитных материала или смесь магнитных материалов и пластика.
Рабочие температуры магнитопластов низки по сравнению с рабочими температурами спеченных магнитов. Использование разных магнитных порошков позволяет получить «гибридный» магнит, обладающий тем или иным набором свойств.
Один из недостатков магнитопластов – верхний температурный предел использования, диктуемый температурным состоянием связующего материала. Эта величина обычно составляет от 80 0 С до 220 0 С. Термоэластичные магнитопласты имеют верхний предел использования по температуре около 80 0 С.
В целом весовая концентрация порошка колеблется от 60 % до 80 %. Причем при производстве магнитопластов и магнитоэластов используются порошки NdFeB, ферриты, Альнико и SmCo, а также их различные комбинации.
Одной из наиболее перспективных сфер применения магнитопластов является создание компактных и высокоэффективных электрических двигателей и приводов, а также различного рода датчиков. Возможность создания магнитов самой сложной формы и высокой намагниченности, а также хорошие механические свойства – основные конкурентные преимущества магнитопластов.
В чем отличие неодимового магнита от других магнитов?
Свойства и применение неодимовых магнитов
Неодимовый редкоземельный магнит изготавливаются из сплава редкоземельных металлов (неодима, железа, бора). Неодимовые магниты обладают наибольшей магнитной способностью из всех существующих.
Как их изготавливают
Магниты из неодима обрели популярность несколько десятков лет назад. Разработки ведутся в крупных месторождениях в странах США, России, Украины, Казахстана и ряда других. Из Китая экспортируется 90% неодима.
Их изготавливают, следуя определенным стандартам. Порошок магнитного состава спекают в сплав, а затем намагничивают. Каждый сплав имеет свою силу сцепления. При обработке их покрывают никелем или цинком, а также эпоксидной смолой, чтобы предотвратить коррозию.
Свойства
Неодимовые магниты имеют следующие свойства:
1) Высокие магнитные параметры Br, Нсв, Hcм, ВН.
2) Отсутствие кобальта в сплаве, что дает им преимущество в ценовом плане.
3) Неодим иногда может быть заменен на другой редкоземельный металл.
4) Их можно можно выплавлять любой формы и размера.
Неодимы достаточно хрупкие и склонны к коррозии, поэтому их покрывают медью, цинком, хромом, никелем или эпоксидной смолой.
Применение неодимовых магнитов дома и на производстве
В быту магниты необходимо использовать крайне осторожно из-за мощного притяжения. При прикреплении к металлической поверхности, снять его будет проблематично. Также данные магниты используются в дизайне интерьеров.
Магниты, изготовленные из неодима, используются во многих промышленных отраслях. Это обусловлено мощной сцепляющей способностью, что позволяет применять их как в поисковых устройствах, так и в электродвигателях. Также они нашли применение в следующих отраслях:
1. Используются при промышленном изготовлении HDD.
2. Встроены в DVD в виде кубика.
3. Обеспечивают увеличение громкости в любых видах динамиков.
4. В нефтяной отрасли продукцию очищают от металлической стружки при помощи неодимов.
5. Встроены в металлоискатели, аппараты МРТ, магнитные держатели, генераторы.
6. Их часто используют на производстве игрушек.
Также в быту удобно иметь такой магнитик под рукой: можно крепить различные приспособления, ключи, бытовые приборы. Не говоря уже о том, что можно искать металлические предметы в труднодоступных местах.
Остановка счетчиков неодимовым магнитом
При установке магнита на счетчик необходимо убедиться, что поблизости нет никаких травмирующих предметов, способных притянуться к нему. Важно проложить между неодимом и счетчиком какую-либо прокладку, чтобы на последнем не оставалось следов. По ним сотрудники коммунальных служб легко вычисляют тех, кто экономит.
Как выбрать и проверить неодимовый магнит
Для бытового использования подходят недорогие и наименее мощные магниты из неодима. Выбирать их следует в зависимости от следующих параметров:
1. Температура. Неодимы с маркировкой N принимают температуру до +80⁰C. После прохождения данной границы притяжение теряет свою силу. Для высоких температур следует выбирать с маркировкой M (до +100⁰C) или H (до +120⁰C). В экстремальных условиях используют изделия EH, выдерживающие температуру до +200⁰C.
2. Площадь соприкосновения. Мощность сцепления зависит от площади соприкосновения рабочих поверхностей.
3. Материал для взаимодействия. Чем больше примесей содержится в материалах обеих поверхностей, тем меньше будет мощность сцепления. Наилучшее сцепление будет с чистым железом.
4. Качество поверхности. Выемчатая и шероховатая поверхность значительно уменьшает мощность сцепления.
5. Угол соприкосновения. Важно наиболее выгодно зафиксировать магнит, чтобы полностью использовать его сцепляющую способность.
В промышленных условиях данные характеристики проверяют при помощи специального оборудования. В домашних условиях таких возможностей нет, но существует проверка, позволяющая отличить неодимовый магнит от ферритового. Одним из самых простых способов будет установить магнит на лист металла. Неодимовый от металла будет отделить крайне сложно, в то время как ферритовый с легкостью снимется. Большие магниты присоединяют к гладким металлическим поверхностям. Разъединить две поверхности будет возможно только при сползании.
Внешние факторы, влияющие на магнитное поле
На магнитное поле неодима влияют некоторые внешние факторы. Они определяют эффективность работы, и показывают насколько магнит отвечает своим характеристикам. За это отвечают следующие параметры:
— расстояние. Расположение магнита на большом расстоянии будет приносить не тот эффект, который требуется. Эффективность работы будет зависеть даже от дополнительного слоя краски или шероховатости поверхности;
— температура. Чтобы температурные характеристики не угнетали полезного действия магнита, необходимо заранее подобрать изделие с нужной маркировкой;
— масса и форма магнита.
Виды неодимовых магнитов
Классы магнитов с различными маркировками (N40, 50M, 35H и т.д.) помогают определить по таблице магнитную энергию, которая показывает мощность сцепления, т.е. сколько силы нужно приложить, чтобы отсоединить его от рабочей поверхности.