gdn что это на питании
GND — что это такое на схеме? (или на материнской плате)
Провод GND на материнской плате/схеме означает земля (масса, минус). Стандартный цвет — черный, белый. Варианты цвета провода питания — красный, синий, зеленый, оранжевый, желтый.
Пример — обозначение черного провода маркировкой GND на разьеме подключения USB к материнской плате:
GND на материнской плате/схеме — важная информация
Стоит учитывать также:
Важный комментарий по поводу обозначений:
Простыми словами. Я подключал в компьютерном корпусе дополнительный вентилятор. Ноль вентилятора, черный провод — подключал к проводу молекс-разьема блока питания, который также имеет черный цвет (важно — это и есть GND). Питание на вентиляторе был желтым — его подключал к желтому проводу питания молекса. На молексе главное нужно понимать:
Еще по поводу молекса. Возможно так задумано, но кажется для подключения нужно использовать провода, которые идут рядышком. Например желтый и черный (12 вольт), красный и черный (5 вольт) — они идут рядом. Два черных провода GND возможно специально предназначены для двух видов подключения.
Под молекс разьемом подразумеваю данный тип коннектора (к нему подключаются жесткие диски например):
Также на плате/коннекторах можете заметить маркировку POWER — означает питание (плюс).
Подключая устройства, например переднюю панель ПК к материнке — будьте очень аккуратны, читайте инструкцию к материнской плате, чтобы не спалить например порты USB. Также смотрите на коннекторы и гнезда — иногда их конструкция исключает неправильное подключение. На заметку — кнопки компьютера, например включение, перезагрузка — неважно как подключить, дело в том, что здесь главное — замыкание. Неважно где плюс/минус, важно — замыкание контактов на секунду, что и делает кнопка, что и приводит к включению/выключению/перезагрузки компа.
Главное — правильно соблюдайте полярность, перед подключением не ленитесь сто раз проверить, чтобы быть уверенными. Ведь короткое замыкание — почти всегда ведет к неисправности..
Надеюсь информация кому-то пригодилась. Удачи и добра!
Подсистема питания в микроконтроллере
Для питания любого МК требуются, как минимум, два провода: положительный («плюс», «Power supply») и отрицательный («минус», «Ground reference»). Обозначают их в даташитах и на схемах следующими сокращениями (Рис. 2.8):
Таблица 2.4. Варианты обозначения выводов питания МК
Пары условных обозначений в даташитах
Несколько замечаний о принятых в международной инженерной практике условностях 3. Напряжение на выводе биполярного транзистора по отношению к общему проводу GND обозначается буквой «V» (англ. «Voltage») и одним из подстрочных индексов: «В» (англ. «Base», база), «С» (англ. «Collector», коллектор), «Е» (англ. «Emitter», эмиттер). К примеру, Vc — это напряжение на коллекторе относительно GND. Напряжение между двумя выводами транзистора обозначается двойным индексом: VCE — это напряжение между коллектором и эмиттером.
Индекс, образованный двумя одинаковыми буквами указывает на источник питания: Vcc — положительный, VEE — отрицательный контакт. Образно можно представить себе транзистор проводимости п—р—п, у которого коллектор соединяется с питанием (С-С), а эмиттер с «массой» (Е-Е). Транзисторы проводимости р—п—р в эту стройную теорию не помещаются, сказывается тот факт, что они изначально по технологическим причинам были меньше распространены.
Для полевых ^-канальных транзисторов существуют аналогичные названия, соответственно, VDD (плюс питания, напряжение «сток — сток», «Drain-to-Drain») и Vss (минус питания, напряжение «исток — исток», «Source-to-Source»).
Поскольку современные МК состоят из полевых транзисторов, то логично было бы их выводы питания обозначить парой «^dd’^ss^» а не «^cc’GND», как у микросхем ТТЛ-логики. Однако, здесь начинается самое интересное (Табл. 2.4). Единообразие отсутствует даже в М К одной фирмы и одного семейства.
Пример 1. Микросхема Z86L33 фирмы Zilog, выполненная в корпусе с 28 выводами, имеет название цепей питания «^dq-^ss»’ а та же микросхема в корпусе с 40 выводами — «KCC-GND».
Пример 2. В семействе ATmega фирмы Atmel принято обозначение «KCC-GND» (далее в книге как основное), а в семействе ARM той же фирмы «Kdd-GND».
Пример 3. МК К1816ВЕ49 имеет два вывода питания, один из них Vcc является основным, а другой VDD служит для подключения резервной батареи.
Наверное, дальше всех в казуистике названий продвинулась микросхема TMS320F фирмы Texas Instruments, имеющая вывод общего провода с «двойной фамилией» KSS1AGND.
Тем, кто часто работаете разными семействами МК, пригодится простое мнемоническое правило — поскольку за буквой «С» латинского алфавита сразу следует буква «D», значит Vcc и VDD относятся к одной и той же цепи, т.е. к питанию. Вывод GND ни с чем не спутаешь, это «земля», «общий провод». Остаётся обозначение Vss, которое методом исключения приравнивается к GND.
Кстати, слово «вывод» (англ. «pin» — булавка) употребляется в электронике для микросхем, транзисторов, конденсаторов, диодов, резисторов, оптопар, катушек индуктивности. Слово «контакт» — для разъёмов, переключателей, джамперов, реле, перемычек, а вот сленговые названия «ноги, ножки» более характерны человеку, нежели электронному изделию.
Организация питания в МК
Двухпроводное питание современным МК досталось по наследству от «прадедушек» i8048/i8051. Сейчас оно в основном применяется в малогабаритных МК с числом выводов 6. 18, например, в Atmel ATtiny, Microchip PIC10/12. Мера вынужденная, т.к. свободных выводов катастрофически не хватает.
С развитием технологии в состав М К стали вводить аналоговые узлы АЦП/ЦАП, которые весьма чувствительны к помехам. Произошёл естественный переход на трёх- (Рис. 2.9), четырёх- (Рис. 2.10, а. в) и многопроводные (Рис. 2.11, а, б) схемы питания.
Добавление цепей AVCC (Analog УСС) и AGND (Analog GND) позволяет развязать между собой аналоговые и цифровые части микросхемы, уменьшить импульсные помехи, повысить инструментальную точность каналов АЦП и ЦАП.
Переменные резисторы ЯА и RD отличаются между собой по сопротивлениям. Во времени они тоже изменяются по разным законам. Например, в рабочем режиме «цифровой» ток значительно больше «аналогового». Следовательно, RA больше, чем Rd. В ждущем режиме ситуация может измениться с точностью до наоборот.
Резисторы Rg, Ry — это омические сопротивления, непосредственно измеренные тестером между выводами микросхем. Их наличие или отсутствие не поддаётся логическому предсказанию и обычно не указывается в даташитах. Например, в одном и том же семействе Atmel ATmega у микросхем ATmega8 и ATmega 16 питание выполняется, соответственно, по схемам, изображённым на Рис. 2.10, в и Рис. 2.10, б.
В каждом конкретном случае разобщённость внутренних цепей надо проверять экспериментально, не надеясь на знаменитый славянский «авось». Абсолютные значения сопротивлений резисторов RG, Rw у разных фирм отличаются, что связано с особенностями технологии изготовления.
Многопроводные схемы особенно характерны для 16- и 32-битных МК, у которых питание разделяется на несколько потоков. А именно: ядро процессора, периферийные буферы, аналоговая часть, система фазовой автоподстройки частоты (ФАПЧ), генераторный блок и т.д. Названия цепей встречаются самые экзотические: VDDA2, KDD18, KDDC0RE, К33, DVCC, VDDAKSS4, DVSS, KSSA. Рекордсменом в этой области можно считать М К семейства Atmel АТ91 САР, где в одном корпусе насчитывается 12 неповторяющихся названий выводов питания и 8 вариаций названий общего провода. Каждая из силовых цепей в свою очередь продублирована несколькими одноимёнными выводами с разных сторон четырёхгранного корпуса, что позволяет равномернее распределить токовую нагрузку.
Фильтрация помех
Если посмотреть на осциллограмму тока потребления МК, то в ней можно заметить низкочастотную (НЧ) и высокочастотную (ВЧ) составляющие. Как следствие, колебания тока приводят к появлению НЧ- и ВЧ-помех на зажимах питания. Для их ослабления используют стандартные решения в виде связки конденсаторов (Рис. 2.12, Рис. 2.13), 1С- и ДС-фильтров (Рис. 2.14, Рис. 2.15).
Неполярные конденсаторы С1, C3 ослабляют ВЧ-помехи. Их наличие обязательно возле любого МК, причём максимально близко от выводов питания (не более 50 мм). Конденсаторы должны быть керамические, например, К10-17 или поверхностно монтируемые чип-коденсаторы ходовых размеров 0603. 1206.
Базовый номинал ёмкости 0.1 мкФ выбран условно, как легко запоминающийся. Устройство будет нормально функционировать и при 0.068 мкФ, и при 0.15. 0.22 мкФ. Иногда параллельно конденсатору С1 ставят ещё одну неполярную ёмкость 1000 пФ, которая снижает уровень радиоизлучений. Обычно такой способ применяют в профессиональной аппаратуре, чтобы войти в допуск при проверках изделия на электромагнитную совместимость и радиопомехи.
Полярный конденсатор С2 желательно использовать танталовый (а не алюминиевый), поскольку он лучше подавляет импульсные помехи. При выборе ёмкости можно руководствоваться эмпирическим правилом, которое заимствовано из многолетней практики применения сетевых источников питания — 1000 мкФ на каждый ампер тока нагрузки. К примеру, если цифровая часть МК потребляет ток 10. 30 мА, то достаточно поставить конденсатор С2 ёмкостью 10. 30 мкФ с рабочим напряжением не менее 6.3 В. Знатоки рекомендуют выбирать более высоковольтные конденсаторы с напряжением 10. 16 В, поскольку повышается надёжность в эксплуатации и, главное, снижается внутренний импеданс, что позволяет лучше фильтровать помехи.
Конденсатор С2 обязателен при батарейном питании в качестве накопителя энергии, а также при значительных колебаниях и скачках напряжения. В некоторых случаях его функцию выполняет конденсатор фильтра сетевого выпрямителя или стабилизатора напряжения. Как вариант, конденсатор С2 может физически размещаться вблизи других цифровых микросхем и косвенно воздействовать на цепь питания МК.
Ферритовая «бусинка» FBI (Ferrite Bead) представляет собой проводник, пропущенный через ферритовое кольцо или цилиндр. Этот элемент способствует снижению высокочастотных излучений, которые можно зафиксировать лишь специальными измерительными радиоприёмниками в экранированной «безэхо-вой» камере. Такие испытания обязательны при сертификации продукции.
В любительской практике фильтр FBI ставится редко, разве что в связной спортивной аппаратуре, где помехи от МК могут существенно повлиять на качество принимаемого радиосигнала и значительно ухудшить чувствительность.
Таблица 2.5. Пределы изменения напряжения питания МК
Напряжение питания [6]
2.7. 3.6; 3.0. 3.6; 4.5. 5.5; 4.75. 5.25
1.8. 5.5; 1.8. 6.5; 2.0. 5.5; 2.7. 5.5
Диапазон питания
Традиционно в любительских разработках используют питание 5 В, хотя в последнее время всё чаще переходят на диапазон 2.7. 3.6 В. Судя по форумам в Интернете, МК с узким и широким диапазоном питания изготавливаются по одному и тому же технологическому процессу, но вследствие естественного разброса параметров, разбраковываются на группы «хуже — лучше». Это не означает, что МК с диапазоном 4.5. 5.5 В не будет работать при пониженном до 3 В питании. Будет! Однако нельзя гарантировать его устойчивый запуск при крайних значениях температуры, тактовой частоты и нагрузок.
Общее правило — когда требуется максимальное быстродействие, то повышают напряжение питания и выбирают узкодиапазонный МК, когда требуется минимальный ток потребления — наоборот.
Подводя итоги обзора подсистемы питания, предлагается для идеализированного МК выбрать следующие усреднённые характеристики:
Практические рекомендации
Как показывает печальный опыт электронщиков, М К весьма «нежные» устройства по отношению к броскам питания и не любят перегрузок напряжения, даже кратковременных. Если имеется вероятность попадания на микросхему в аварийном режиме уровней более 5.5. 7 В (для каждого МК в даташите по-разному), то необходимо ставить элементы защиты — стабилитроны, сапрессоры.
Частая ошибка увлечённых экспериментаторов заключается в установке МК в панельку «задом-наперёд», противоположной стороной. Получается, что вместо плюса питания может подаваться минус, линии портов могут соединяться с об
щим проводом и т.д. Подавляющее большинство МК такие опыты выдерживают с достоинством и без разрушения. Здесь важно следить за длительностью воздействия неблагоприятных факторов, чем меньше время, тем лучше. Подача питания обратной полярности вызывает температурный разогрев корпуса МК, но если вовремя снять напряжение, то микросхема, как правило, остаётся целой.
Нумерация выводов питания МК не стандартизована, в отличие от серийных микросхем ТТЛ- и КМОП-логики. Известное правило: «Старший по номеру вывод — это Ксс, а вдвое меньший по номеру вывод — это GND» распространяется лишь на некоторые типы МК (в частности, Atmel ATmega8515), и то, для совместимости с цоколёвкой микросхем с ядром MCS-51. Лучшим вариантом с точки зрения помехоустойчивости и частотных свойств является размещение выводов подсистемы питания в центре корпуса (например, Atmel ATmega8535). При этом сокращается путь тока от источника питания к процессорному ядру и снижается индуктивность выводов. На низких тактовых частотах это не стол ь существенно, а на высоких — приносит ощутимую пользу.
Если корпус микросхемы четырёхгранный, то «земляных» выводов GND, как правило, много и они дублируют друг друга со всех четырёх сторон. Таким нехитрым способом повышается суммарная максимальная токовая нагрузка на линии портов МКдо 200. 400 мА без перегрева кристалла.
При разработке топологии печатной платы следует придерживаться общих рекомендаций по проектированию аналого-цифровых устройств:
Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема. (Выпуск 1)
Распиновка разъемов блока питания: какая линия за что отвечает
Содержание
Содержание
Подключение проводов блока питания при сборке ПК — одна из самых серьезных задач, с которой сталкиваются начинающие пользователи. Все слышали фразу «с электричеством шутки плохи», и нужно понимать, что в случае неправильного подключения проводов можно запросто повредить дорогие комплектующие. Чтобы этого не случилось, нужно знать распиновку разъемов БП, максимальную нагрузку на каждый разъем и положение ключей, которые не дают подключить провода неправильно. В этой статье вы найдете всю информацию на эту тему.
Стандарты блоков питания для ПК и их разъемов развиваются уже почти 40 лет — со времен выхода первых компьютеров IBM PC. За это время сменилось несколько стандартов AT и ATX. Казалось бы, все возможные разъемы уже придуманы и ничего нового не требуется, но осенью этого года ожидается выход видеокарт Nvidia GeForce RTX 3000-й серии, который принесет с собой новый, 12-контактный разъем питания. Производители уже стали добавлять в комплекты проводов новых БП коннектор 12-Pin Micro-Fit 3.0. Будет неудивительно, если этот разъем питания дополнит новые стандарты ATX.
Перед тем, как перейти к описанию и распиновке всех разъемов в современном БП, хотелось бы напомнить, что основные напряжения, которые нам встретятся, это +3.3 В, +5 В и +12 В. Сейчас основное напряжение, которое требуется и процессору, и видеокарте — это +12 В. В свою очередь, +5 В нужно накопителям, а +3.3 В используется все реже.
И если взглянуть на табличку, которая есть на боку каждого БП, мы увидим выдаваемые им напряжения, токи и мощность по каждому из каналов.
Разъем Molex
Начнем с самого древнего разъема, который почти без изменений дошел до наших времен, появившись у первых «персоналок». Это всем известный 4-контактный разъем, называемый Molex.
Сегодня сфера применения этого разъема сузилась до питания корпусных вентиляторов, передних панелей корпусов ПК, разветвителей и переходников питания видеокарт и накопителей. Например, переходников питания видеокарты «Molex — PCI-E 6 pin». Несмотря на то, что разъем выдает до 11 А на контакт, а значит, может дать видеокарте, в теории, 132 ватта мощности, использовать его стоит крайне осторожно.
Надо учитывать, что толщина проводов может не соответствовать такой мощности, а сами контакты могут быть разболтанными, с неплотной посадкой. В результате это чревато нагревом проводов, контактов и расплавлению изоляции.
Если вам обязательно требуется такой переходник, выбирайте модель с двумя разъемами Molex.
Обязательно проверяйте качество контактов переходника и вставляйте его надежно, до упора. Для защиты от неправильного подключения в разъеме предусмотрены два скоса.
Внимание! Несмотря на то, что скосы не дают воткнуть разъем другой стороной, при определенном усилии и разболтанных гнездах есть вероятность воткнуть разъем, развернутый на 180 градусов, что приведет к выходу из строя оборудования.
24-контактный разъем питания материнской платы
Этот разъем появился в спецификациях ATX12V 2.0 в 2004 году и заменил устаревший 20-контактный разъем. Он может обеспечить довольно серьезные мощности для питания процессора, видеокарты и материнской платы: по линии +3.3 В — 145.2 Вт, по линии +5 В — 275 Вт и 264 Вт по линии +12 В (при использовании контактов Molex Plus HCS).
Примечание. Контакты Molex сертифицированы на ток 6 А. Molex HCS — до 9 А. А Molex Plus HCS — до 11 А.
Разъемы питания процессора
Энергопотребление процессоров неуклонно росло последние 20 лет, что потребовало дополнительных разъемов питания для них. И в спецификациях ATX12V был введен дополнительный 4-контактный разъем питания процессора +12 В.
8-контактный разъем питания процессора
Несмотря на то, что 4-контактный разъем питания процессора рассчитан на максимальную мощность до 288 Вт (при использовании контактов Plus HCS), в спецификации EPS12V версии 1.6, появившейся в 2000 году, был представлен 8-контактный разъем питания процессора. Первоначально этот разъем использовался в серверах с серьезными нагрузками на систему питания, но впоследствии перекочевал и в обычные ПК.
Сегодня даже на бюджетных материнских платах мы встречаем именно этот разъем, который теоретически может подать на питание процессора мощность до 576 Вт.
4-контактный и 8-контактный разъемы совместимы между собой. Если на вашем БП есть только 4-контактный кабель питания, он подойдет в 8-контактный разъем на материнской плате. А 8-контактный кабель, соответственно, подойдет в 4-контактный разъем.
Значения передаваемой мощности выглядят просто фантастически, но вы должны понимать, что это теоретическая мощность. На практике производители топовых материнских плат, ориентированных на разгон, ставят два 8-контактных разъема питания процессора.
Например, на MSI MEG Z490 ACE. Увеличение контактов разъема и сечения проводов приводит к снижению их нагрева и, как следствие, к безопасной работе.
Внимание! При подключении 8-контактных разъемов питания процессора и видеокарты нужно учитывать, что несмотря на то, что они не совпадают по скосам контактов, их вилки очень похожи. При определенном усилии можно воткнуть вилку питания процессора в разъем на видеокарте и наоборот. Это приведет к замыканию и выходу оборудования из строя.
Разъем питания 3.5″ дисководов
Еще один разъем, уже практически не встречающийся на новых БП. Ранее использовался для питания дисководов 3.5″ и некоторых карт расширения.
Разъем питания SATA
Стандартный разъем для питания HDD, DVD и 2.5″ SSD-приводов. Надежный и удобный разъем, воткнуть который другой стороной не получится из-за расположения специальных выступов. Ток, потребляемый HDD и SSD, довольно небольшой и беспокоиться о нагреве таких разъемов не стоит.
Разъемы дополнительного питания видеокарт
В начале нулевых годов резко выросло энергопотребление видеокарт, что потребовало для них специальных разъемов питания, принятых в спецификациях ATX12V 2.x.
Спецификация PCI Express x16 Graphics 150W-ATX Specification 1.0 была принята рабочей группой PCI-SIG в 2004 году. Она представила 6-контактный разъем, который может давать видеокарте 75 Вт мощности. И еще 75 Вт берутся со слота PCI-E x16. Получившиеся в сумме 150 ватт достаточны для питания видеокарт среднего уровня, например, GeForce GTX 1650 SUPER.
Но этих возможностей питания быстро стало недостаточно и вскоре была принята спецификация PCI Express 2.0, которая дала уже 8-контактный разъем питания для видеокарт. 8-контактный разъем питания позволял передать 150 Вт мощности и вместе с 75 Вт, идущими со слота PCI-E x16, получалось 225 Вт, которых стало достаточно уже для производительных видеокарт.
Производители видеокарт обычно стараются разгрузить питание по слоту PCI-E x16 и обеспечить запас питания для разгона, поэтому видеокарты с потреблением 120 ватт и выше, например, GeForce GTX 1660 SUPER, все чаще оснащаются восьмипиновым разъемом питания.
Конструкция разъемов позволяет подключение 6-контактного кабеля питания в 8-контактный разъем. Но, скорее всего, потребуется специальный переходник, ведь в этом случае видеокарта по сигнальным контактам распознает, какой кабель подключен в разъем питания.
8-контактный разъем обычно делается разборным, что позволяет подключить его в 6-контактную колодку.
Вставить неправильно разъемы этого типа не получится: скосы на пинах расположены в строго определенном порядке. Но нужно подключать питание до упора — до защелкивания предохранительного язычка.
Выводы
Как вы могли заметить, все разъемы на современных БП разработаны так, чтобы исключить неправильное подключение. Также они обеспечивают избыточную надежность по нагрузке питания, что достигается увеличением числа контактов.
Но при сборке ПК не помешает помнить распиновки всех разъемов и максимальную силу тока, которую может выдержать разъем. Если пренебречь этими знаниями, можно рано или поздно повредить комплектующие. С подобным в период «крипто-лихорадки» 2017-2018 года столкнулись майнеры, у которых массово горели дешевые переходники питания видеокарт «Molex — PCI-E 6 pin».