при какой температуре следует отбивать шлак после сварки хромистых сталей ферритного класса
Сварка ферритных высоколегированных хромистых сталей
Стали, содержание легирующих элементов и примесей которых находится внутри этой области, или на её границах, кристаллизуются в состоянии дельта-феррита, а при охлаждении проходят через аустенитный сектор графика. Хром сильно влияет на прокаливаемость стали, увеличивая её. Поэтому в ней, даже при обычном воздушном охлаждении происходят мартенситные превращения. А при сильно замедленном охлаждении аустенит может преобразовываться в феррит и карбиды.
Сложности при сварке ферритных сталей
При сварке хромистых ферритных сталей появляются определённые трудности. При нагревании до температуры 600…900° С хром, вступает в реакцию с углеродом, образовывая карбиды. Об этом уже упоминалось выше. Кристаллиты карбидов, находящиеся внутри металла, становятся причиной межкристаллитной коррозии, которая существенно ухудшает механические свойства стали. При этом, чем выше процентное содержание углерода в составе стали, тем активнее формируются карбиды.
Из-за высокого содержания хрома, при сварке данных сталей металл сварного шва, и зона термического влияния, имеют повышенную твёрдость и хрупкость. При этом, возникают внутренний напряжения в металле и повышается риск появления дефектов сварного шва (в основном, образования холодных трещин и горячих трещин при сварке).
Хром имеет свойство сильно окисляться. При окислении хрома образуются частые тугоплавкие окислы, которые, также, отрицательно влияют на свариваемость сталей этого типа.
Технология сварки ферритных хромистых сталей
Сварку ферритных сталей выполняют с предварительным подогревом до температуры 300-400°C и последующим, после сварки, высоким отпуском (нагрев до температуры 650-750°C и последующее медленное охлаждение). Высокий отпуск необходим при сварке сталей этого класса для снятия внутренних напряжений и восстановления начальных механических свойств стали.
Электроды для сварки высоколегированных ферритных сталей
Для сварки ферритных, сталей, применяют электроды из сварочной проволоки следующих марок: Св-01Х19Н9, Св-04Х19Н9, Св-07Х25Н13 с покрытием, имеющем в своём составе плавиковый шпат и окись марганца. Применение этих электродов позволяет получить жидкий шлак, который хорошо растворяет окислы хрома. Рекомендуют следующие покрытия: ЦЛ-2, ЦТ, УОНИ-13/НЖ.
Режимы сварки ферритных сталей
Для сварки ферритных, как и для большинства высоколегированных сталей, применяют постоянный ток обратной полярности, при малых сварочных токах. Величину тока определяют из следующей пропорции: 25-30 А на миллиметр диаметра электрода. И делается это из тех соображений, что большинство высоколегированных сталей при сварке легко перегреваются, т.к. обладают малой теплопроводностью.
Особенности сварки высоколегированных сталей и сплавов различных групп
Сварка хромистых сталей связана с некоторыми специфическими особенностями. Находят применение хромистые стали следующих типов: 1) 5—8%-ные мартенситные (Х5М, 1Х8ВФ и др.) и 5—8%-ные мартенситно-ферритные (Х6СЮ и др.) жаропрочные и коррозионностойкие; 2) 8—10%-ные силь-хромы мартенситного класса (4Х10С2М, 4Х9С2 и др.); 3) 11— 12%-ные мартенситные (1Х12Н2ВМФ и др.) и мартенситно-ферритные (1Х11МФ, 1Х12В2МФ и др.) жаропрочные; 4) 13-, 17-, 25- и 28%-ные мартенситные (2X13, 1Х17Н2 и др.), мартенситно-ферритные (1X13 и др.) и ферритные (0X13, Х17, 0Х17Т, Х25Т, Х28 и др.) жаропрочные, коррозионностойкие и жаростойкие. Хромистые стали сваривают по двум технологическим вариантам: с применением присадочных материалов такого же или сходного с основным металлом химического состава; с использованием присадочных материалов аустенитного или аустенитно-ферритного классов. В первом случае сварное соединение отличается структурной однородностью и высокой прочностью после соответствующей термообработки. Во втором случае соединение отличается структурной неоднородностью, усугубляемой диффузионными процессами, происходящими при эксплуатации изделий в области повышенных температур. При этом равнопрочность сварных соединений, как правило, не достигается.
Все хромистые стали сваривают с подогревом. Однако в отдельных случаях можно отказаться от подогрева. Так, низкоуглеродистые ферритные и даже мартенситные стали толщиной до 8—10 мм удается сваривать без подогрева. Иногда можно обойтись без подогрева при использовании аустенитных и аустенитно-ферритных электродов. Не требуется также подогрев при электрошлаковой сварке. Чем больше толщина свариваемой стали и чем выше степень ее легирования, особенно углеродом, тем выше должна быть температура подогрева. Низкоуглеродистые хромистые ферритные стали толщиной более 10 мм желательно сваривать с подогревом до температуры 150—180° С, жаропрочные 11—12%-ные мартенситные— с подогревом не ниже, чем до температуры 250—300° С.
Если сварку производят электродами или проволокой с образованием в шве мартенситной или мартенситно-ферритной структуры, изделие во избежание образования в шве и околошовной зоне холодных трещин незамедлительно после сварки следует подвергать высокому отпуску при температуре 750—800° С (для хромистых 5%-ных сталей при 840—860° С).
При сварке ферритными швами, когда появление мартенсита в металле шва исключено, и при использовании аустенитных электродов отпуск с целью повышения пластичности сварного соединения можно производить не сразу после сварки. По этим причинам сварка аустенитными электродами нашла широкое применение, особенно в монтажных условиях.
Оптимальные механические свойства жаропрочных 5—6- и 11—13%-ный хромистых сталей и их сварные соединения получают только после двойной термообработки: закалки или нормализации с последующим отпуском. Длительный нагрев хромистых сталей и сварных швов с содержанием более 15% Сг в интервале температур 400—550° С сообщает им так называаемую 475-градусную отпускную хрупкость, а в интервале температур 650— 800° С в них образуется 0-фаза.
При сварке ферритных хромистых сталей (Х17, Х25Т, Х28 и др.) в результате нагрева металла до высоких температур наблюдается интенсивный рост зерна в околошовной зоне, сопровождающийся потерей пластичности металла.
Хромистые ферритные стали, подобно хромоникелевым аусте-нитным, подвержены межкристаллитной коррозии в околошовной зоне. Отпуск при температуре 730—780° С возвращает стали стойкость против межкристаллитной коррозии. Одновременно повышается пластичность металла в околошовной зоне, вызванная его перегревом при сварке.
Для предупреждения склонности хромистых сталей к межкристаллитной коррозии их легируют титаном и снижают в них содержание углерода (0Х17Т, 0Х17М2Т).
Сварка хромоникелевых аустенитных сталей и сплавов. Хро-моникелевые аустенитные стали сваривают в основном двухфазными аустепитио-ферритными швами, аустенитные сплавы и некоторые аустенитные жаропрочные стали типа 14-14, 15-25 и коррозионностойкие стали типа 23-28 — аустенитными швами.
Аустенитные стали и сплавы сваривают в гомогенизированном (отожженном) состоянии, жаропрочные стали и сплавы—иногда и в упрочненном (состаренном) состоянии.
Для предупреждения образования холодных трещин в этом случае прибегают к некоторым технологическим приемам: подогреву, применению более пластичного, чем основной металл, шва и др.
Сварка аустенитно-мартенситных сталей. Стали этого типа обладают двухфазным строением и свариваются, как правило, двухфазными аустенитно-ферритными швами. Поэтому появления кристаллизационных трещин при сварке таких сталей можно не опасаться. Главная трудность заключается в сохранении в металле шва алюминия, титана и бора, требующихся для его дисперсионного упрочнения. Если упрочнение достигается за счет молибдена или ниобия, свдрка указанных сталей заметно упрощается.
Стали этого класса также рекомендуется сваривать в гомогенизированном состоянии. Для получения оптимальных свойств соединения после сварки подвергают многоступенчатой
термообработке — закалке и старению при положительных и отрицательных температурах.
Сварочный шлак
Содержание:
Соединение металлических деталей в цельные конструкции часто осуществляется с помощью дуговой сварки. Это довольно эффективная и простая технология сваривания, но основным побочным эффектом ее является сварочный шлак.
Что такое шлаковые включения
Все возникающие в процессе сварке на металлической поверхности шлаковые включения разделяют на два вида:
Негативное воздействие на механические характеристики металлического изделия оказывают обе разновидности включений.
Причины, по которым шлаковые включения образуются
Довольно часто только осваивающие сварочные технологии специалисты задаются вопросом почему много шлака при сварке образуется на соединительных стыках. Появление таких включений обусловлено разными факторами:
Чтобы осуществлялась сварка без шлака или же с минимальным его количеством, желательно обратиться за помощью к опытным сварщикам. Если вы хотите самостоятельно сваривать, то следует научиться сваривать самые простые элементы и только потом приступать к более сложным.
Как шлак отличить от металла
С разными проблемами и вопросами при создании металлоизделий посредством сваривания сталкиваются сварщики, особенно новички. Например, многие затрудняются как отличить шлак от металла при сварке.
В действительности отличить металл и шлаковые включения несложно. Для этого следует обратить внимание на следующие факторы:
Почему шлак нужно удалять
Шлаковые включения в основном состоят из оксидов за счет пористой структуры существенно понижают прочностные свойства металла. При эксплуатации сварной конструкции оксиды из шлака способны вступать с железом в химическую реакцию, что приводит к ее разрушению. Поэтому сразу после остывания, когда шлак становится черным его необходимо удалять.
На начальном этапе сварки образовавшийся над ванной шлак с окислами защищает металл от быстрого охлаждения. Поскольку намного медленнее понижается температура металла, при удалении шлака после сварки швы получаются более ровными и однородными.
Есть и другие причины, по которым рекомендовано удалять после сваривания деталей образовавшийся на стыках шлак:
Обратите внимание! Если не удалить сварочный шлак, применение готового изделия может быть невозможным из-за присутствующих дефектов в виде волчков и неметаллических включений. Особенно важно это для конструкций, которые при эксплуатации будут подвергаться высоким внешним нагрузкам.
Как минимизировать шлаковые включения при сваривании металлов
Многих начинающих мастеров беспокоят вопросы «почему много шлака при сварке инвертором». Как правило такие проблемы наблюдаются при сварке, когда элементы находятся в нижнем положении. В случаях, когда деталь расположена под уклоном, то шлак стекает намного быстрее чем жидкая металлическая смесь из сварочной ванны. В связи с тем, что шлак не успел выйти наружу, он остается в сварочном шве.
Также шлаковые образования появляются при чрезмерно больших зазорах или при недостаточном токе в отношении к толщине металла. Намного реже проблемы со шлаком возникают при создании вертикальных швов, при этом шов остается сверху, а шлак стекает вниз.
Некоторые профессиональные сварщики советуют ставить заготовку под уклоном и варить сверху вниз, другие предлагают использовать для сварки электроды без шлака с темным покрытием.
Чтобы внутрь сварочной ванны не попадали частички шлаков, следует координировать направление электрода. Располагать его нужно таким образом, чтобы при испарении электродного покрытия поток газа такой дефект «выдувало» на внешнюю поверхность соединительного стыка. Оставлять шлак в сварочной ванне нельзя. Он быстро должен кристаллизироваться, что позволит удалить его без особых усилий.
Как избавиться от шлака
Чтобы при сваривании избавиться от шлака, можно попытаться увеличить дугу. Это предотвратит затекание шлаковых образований под сварочную ванну.
Изменением полярности тока при сварке инвертором и движением от минуса к плюсу электродом можно предотвратить накопление шлака в шве. Нельзя на одном месте слишком долго задерживаться, перемещать дугу необходимо быстро и равномерно.
Если габариты изделия позволяют, можно попытаться обратно «загнать» шлак, меняя угол наклона детали. Меньше шлака дает инверторная сварка на обратных токах. Такой аппарат лучше всего использовать начинающим сварщикам, поскольку они предотвращают залипание электрода и в разы упрощают сварочный процесс.
Интересное видео
Сварка хромистых сталей
Для изготовления химической аппаратуры, нефтеаппаратуры и других изделий широко используются хромистые стали, являющиеся нержавеющими и кислотостойкими и более дешевыми по сравнению с другими марками легированных сталей, обладающих этими же свойствами.
При содержании хрома от 4 до 14% сталь относится к среднелегированным, а при содержании хрома более 14% — к высоко
легированным. Среднелегированные хромистые стали содержат до 0,15% углерода и применяются в конструкциях, где не требуется, высокая прочность, но необходима устойчивость против кор-> розии.
Высоколегированные хромистые стали могут содержать до 0,35% углерода; они обладают повышенной прочностью, хорошо сопротивляются коррозии и действию кислот. Для повышения устойчивости против образования окалины (газовой коррозии) при температурах до 1100° в состав хромистых сталей вводится 1—2% кремния или 0,2—0,6% алюминия. Повышение жаропрочности достигается введением в состав хромистой стали до 0,6% молибдена. Для улучшения свариваемости хромистой стали в ее состав вводят титан.
Сварку хромистых сталей производят проволокой из хромоникелевой стали Св-02Х 19Н9 и Св-Х25Н13 по ГОСТ 2246—60 с покрытием ЦЛ-2 или УОНИ-13/нж. Эти покрытия дают жидкий шлак, хорошо защищающий ванну, растворяющий окислы хрома и раскисляющий металл шва.
Вследствие повышенного электрического сопротивления проволоки из хромоникелевой стали электроды из нее при большом токе могут быстро нагреваться и усиленно плавиться. Расплавленный металл будет стекать на недостаточно нагретый основной ме-
талл, что приведет к образованию непроверенных мест и ослаблению прочности сварного соединения.
Для предупреждения указанного явления электроды берут длиной не более 250—300 мм, т. е. короче обычных. Из этих же соображений при сварке хромистых сталей применяют пониженный ток и следующие режимы сварки:
Ток, а. 50—70 90—100 120—150 100—180 225—260
Сварку ведут на постоянном токе обратной полярности. Для лучшего отвода тепла под шов кладут толстые медные подкладки, охлаждаемые водой. Для восстановления первоначальных свойств основного металла изделие после сварки подвергают термической обработке по одному из режимов, указанных в табл. 20.
Режимы термообработки сталей после сварки
Содержание хрома встали, %
Температура нагрева, град
Выдержка, мин/1 мм толщины (ио не менее 1 часа)
Два варианта: 1) охлаждение с печью до 600° со скоростью 25 град/час, затем иа воздухе; 2) охлаждение с печью до 730° с выдержкой при этой температуре ие менее 5 мин иа 1 мм толщины, затем на воздухе Охлаждение на воздухе
Два варианта: 1) охлаждение на воздухе; 2) охлаждение до 600° с печью со скоростью 25 град/час, затем на воздухе
Охлаждение в холодной воде, затем отпуск с нагревом до 600 — 700° и медленным охлаждением
Хромистые стали с содержанием 18—30% хрома и до 0,35% углерода во избежание образования трещин подогревают до 200— 350°. Нужно особенно следить за тем, чтобы не перегревать металл шва и околошовной зоны, ведя сварку на пониженных токах с наибольшей скоростью. Особенно это опасно при сварке многослойных швов валиками малых сечений, выполняемых с охлаждением до 200° перед наложением каждого последующего слоя. Для получения менее хрупкого металла шва сварку сталей с 18—30% хрома осуществляют электродами из хромоникелевой стали Св-Х25Н13 с покрытием УОНИ-13/нж.
Если от металла шва после сварки требуется твердость, то охлаждение производят быстро в воде; при медленном охлаждении на воздухе металл шва получается менее твердым, но более вязким.
Металл толщиной свыше 8—10 мм следует сваривать в несколько слоев и, если возможно, с предварительной подваркой корня V-образного шва с обратной стороны.
СВАРКА И РЕЗКА МЕТАЛЛОВ
Аппарат для сварки: какой выбрать
Самый популярный способ крепления металлических деталей – сварка. И заниматься ею можно не только во промышленных масштабах. В быту сварочные работы используются также часто, причем речь не всегда о сварщиках, …
Расходные материалы, необходимые для сварки
Чтобы выполнить сварку прочно и качественно, недостаточно иметь только сварочный аппарат. Дополнительно потребуется подобрать расходные материалы с учетом вида свариваемого металла. Перед началом работы определите, что именно вам нужно, и …
Критерии выбора сварочных аппаратов
Есть несколько факторов, анализировать которые при выборе сварочного аппарата нужно обязательно в магазине сварочного оборудования. Следует учесть рабочий диапазон температур, а также мощность. Рекомендуется учесть возможность смены полярности, и показатель …
Продажа шагающий экскаватор 20/90
Цена договорная
Используются в горнодобывающей промышленности при добыче полезных ископаемых (уголь, сланцы, руды черных и
цветных металлов, золото, сырье для химической промышленности, огнеупоров и др.) открытым способом. Их назначение – вскрышные работы с укладкой породы в выработанное пространство или на борт карьера. Экскаваторы способны
перемещать горную массу на большие расстояния. При разработке пород повышенной прочности требуется частичное или
сплошное рыхление взрыванием.
Вместимость ковша, м3 20
Длина стрелы, м 90
Угол наклона стрелы, град 32
Концевая нагрузка (max.) тс 63
Продолжительность рабочего цикла (грунт первой категории), с 60
Высота выгрузки, м 38,5
Глубина копания, м 42,5
Радиус выгрузки, м 83
Просвет под задней частью платформы, м 1,61
Диаметр опорной базы, м 14,5
Удельное давление на грунт при работе и передвижении, МПа 0,105/0,24
Размеры башмака (длина и ширина), м 13 х 2,5
Рабочая масса, т 1690
Мощность механизма подъема, кВт 2х1120
Мощность механизма поворота, кВт 4х250
Мощность механизма тяги, кВт 2х1120
Мощность механизма хода, кВт 2х400
Мощность сетевого двигателя, кВ 2х1600
Напряжение питающей сети, кВ 6
Более детальную информацию можете получить по телефону (063)0416788
Общие рекомендации по сварке хромистых сталей
1. Хромистые стали в зависимости от условий эксплуатации сваривают по двум вариантам:
– с применением присадочных материалов, аналогичных основному металлу;
– использованием присадочных материалов аустенитного или аустенитно-ферритного классов.
В первом случае сварное соединение отличается структурной однородностью и высокой прочностью после термообработки, во втором – структурной неоднородностью, равнопрочность с основным металлом не достигается.
2. Все хромистые стали свариваются с подогревом (низкий коэффициент теплопроводности).
Но в отдельных случаях можно отказаться от подогрева. Это возможно при сварке сталей толщиной до 8 мм, а также при использовании аустенитных и аустенитно-ферритных электродов.
3. Наиболее приемлемой является сварка плавлением (РДС, АДС, сварка в Аг, Аг+О2 плавящимся и неплавящимся электродами, ЭШС).
4. Сварку выполняют на постоянном токе обратной полярности (эвакуация водорода).
5. После сварки, как правило, сварное соединение подвергают термообработке.
6. Сварочные материалы (электроды, проволоки, флюсы) необходимо прокаливать и хранить в герметичной таре.
7. Для сварки хромистых сталей применяют малоактивные и даже пассивные безмарганцовистые солеоксидные флюсы.
8. Силу сварочного тока и вылет электрода применяют на 20. 30% меньше, чем при сварке перлитных сталей.
9. Сварку целесообразно осуществлять с малым тепловложением для уменьшения ЗТВ, понижения склонности к росту зерна и т. п.
Сварка мартенситных сталей
К мартенситным относятся стали с содержанием Сг = 11. 12 %, дополнительно легированные С, Ni и другими элементами (табл. 10 и 11). Применение для закаленной стали отжига Т
В результате сварочных деформаций, сопровождающих сварку, действия остаточных и структурных напряжений в сварных соединениях возможно образование холодных трещин. Для высокохромистых сталей Мн не превышает 360 °С, а Мк – 240 °С.
Химический состав высокохромистых мартенситных сталей
Марка стали | Содержание элементов, % (по массе) | |||||||||||||||||||||||||
C | Si | Mn | Cr | Ni | Mo | V | Прочие | |||||||||||||||||||
15Х11МФ | 0,12. 0,19 | Механические свойства и назначение мартенситных сталей
С увеличением содержания углерода точки Мн и Мк еще более понижаются, что приводит к возрастанию твердости мартенсита и его хрупкости. При снижении содержания углерода вязкость мартенсита повышается, однако образующийся при этом d–феррит, в свою очередь, сообщает им высокую хрупкость. Содержание углерода в мартенситных сталях ограничивают до 0,20 %, что обеспечивает достаточную пластичность и ударную вязкость ответственных деталей энергетических установок. Обеспечить стойкость металла шва и, в особенности, околошовной зоны к образованию трещит – основная трудность при сварке сталей мартенситного класса. Для этого возможно применение следующих мер: 1. Получение мелкодисперсной структуры металла шва и околошовной зоны (модифицирование металла шва за счет использования сварочных проволок Св-15Х12ГНМВФ, 01Х12Н2 и жестких режимов сварки). 2. Применение предварительного и сопутствующего подогрева. Лучшие свойства сварных соединений достигаются при температуре предварительного подогрева в интервале Мн–Мк, а также когда после сварки производится «подстуживание» до Мк (для завершения мартенситного превращения), но не ниже 100 °С (табл. 12). 3. Снижение содержания водорода. Термообработка после сварки (табл. 12).
|