при какой длине волны уф образуется озон
При какой длине волны уф образуется озон
С озоном вы уже знакомились в главе 1, когда мы рассказывали о составе атмосферного воздуха, в котором озон присутствует в виде незначительной примеси. В чистом виде озон O3 – голубой газ с резким запахом (греческое озос – пахучий). Строение молекулы озона можно изобразить разными способами. Например, комбинацией двух крайних (или резонансных) структур. Каждая из таких структур не существует в реальности (это как бы «чертеж» молекулы), а настоящая молекула представляет собой нечто среднее между двумя резонансными структурами.
Хотя молекулярный кислород и озон составлены из атомов одного и того же элемента кислорода – это разные вещества. С таким же явлением на примере углерода мы уже сталкивались в главе 3 (алмаз и графит). Оно называется аллотропией. Графит и алмаз – разные вещества, хотя и тот и другой состоят только из углерода. Теперь мы наблюдаем такое же явление у кислорода.
Если какой-либо элемент образует два или несколько простых веществ, то такие вещества называются аллотропными модификациями. Само это явление называется аллотропией.
Итак, озон и молекулярный кислород – две разные аллотропные модификации элемента кислорода.
В лаборатории озон получают при «тихом» (без искр) электрическом разряде в стеклянной трубке, через которую пропускается ток кислорода. Такой прибор называется озонатором. Есть и другие лабораторные способы получения озона.
** Кому-то из читателей (особенно участникам химических олимпиад) наверняка знаком классический способ получения пероксида водорода H2О2 из пероксида бария BaO2 при действии разбавленной серной кислоты.
Пероксиды – это вещества, содержащие связь О–О. Интересно, что если взять не разбавленную, а концентрированную серную кислоту, то реакция идет по другому пути и образуется озон:
Резина быстро разрушается в атмосфере озона, а спирт при соприкосновении с ним воспламеняется. В чем же причина такой высокой окислительной способности озона?
С другой стороны, способность озона разлагаться с образованием атомарного кислорода делает его почти идеальным средством для обеззараживания питьевой воды. Озон убивает болезнетворные бактерии окислением, частично превращаясь при этом в молекулярный кислород. Поэтому озонированная вода лучше и вкуснее хлорированной, которую до сих пор приходится пить жителям многих городов.
Основная масса природного озона образуется в верхних слоях атмосферы из молекул O2 в результате поглощения «жесткого» (т.е. несущего много энергии) ультрафиолетового излучения Солнца:
Рис. 6-7. Озон образуется под действием ультрафиолетовых лучей с длиной волны менее 180 нм. УФ-свет с большей длиной волны (около 320 нм), наоборот, способствует разложению озона. Поверхности Земли достигают только те ультрафиолетовые лучи, которые не опасны для живых организмов. Когда мы загораем на солнце, на нашу кожу падают «мягкие» ультрафиолетовые лучи, не способные принести вреда здоровью (если загорать в меру).
Ряд исследователей считает, что возникновение озоновых дыр связано не столько с загрязнением атмосферы хлор- и фторуглеводородами, сколько с особенностями атмосферной циркуляции в различных районах Земли. Вопрос пока остается открытым. Впрочем, снижение промышленного загрязнения атмосферы в любом случае пошло бы на пользу климату и биосфере нашей планеты.
Вполне вероятно, что проблема промышленных выбросов в атмосферу – это не только проблема загрязнения поверхности Земли вредными веществами, но еще и проблема «загрязнения» солнечного спектра жестким, вредным для человека ультрафиолетовым излучением в результате частичного разрушения озонового слоя.
Но не стоит и преувеличивать опасность: полное исчезновение озона не грозит атмосфере до тех пор, пока в ней есть кислород и пока светит Солнце.