при каком значении параметра векторы коллинеарны
Условие коллинеарности векторов
В статье ниже рассмотрим условия, при которых векторы считаются коллинеарными, а также разберем тему на конкретных примерах. И, прежде чем приступить к обсуждению, напомним некоторые определения.
Коллинеарные векторы – ненулевые векторы, лежащие на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому другому.
Данное определение дает возможность убедиться в коллинеарности векторов в их геометрическом отображении, однако точность такого способа может иметь погрешности, например, в зависимости, от качества самого чертежа. Поэтому обратимся к алгебраическому толкованию: сформируем условие, которое будет явным признаком коллинеарности.
Координатная форма условия коллинеарности векторов
Мы можем также получить еще одно условие коллинеарности векторов, опираясь на понятие их произведения.
Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.
Рассмотрим применение условия коллинеарности на конкретных примерах.
Решение
Ответ: заданные векторы коллинеарны.
Решение
Решение
Согласно выведенному выше условию, векторы коллинеарны, если
b → = λ · a → ⇔ b x = λ · a x b y = λ · a y ⇔ p = λ · 2 3 = λ · 7
Ответ: при p = 6 7 заданные векторы коллинеарны.
Также распространены задачи на нахождения вектора, коллинеарного заданному. Решаются они без затруднений, основываясь на условии коллинеарности: : достаточным будет взять произвольное действительное число λ и определить вектор, коллинеарный данному.
Решение
Решение
Линейная зависимость системы векторов. Коллинеарные векторы
В данной статье мы расскажем:
Коллинеарные векторы
Коллинеарные векторы — это векторы, которые являются параллелями одной прямой или лежат на одной прямой.
Условия коллинеарности векторов
Два векторы являются коллинеарными, если выполняется любое из следующих условий:
Условие 2 неприменимо, если одна из координат вектора равна нулю.
Условие 3 применимо только к тем векторам, которые заданы в пространстве.
Примеры задач на исследование коллинеарности векторов
Исследуем векторы а = ( 1 ; 3 ) и b = ( 2 ; 1 ) на коллинеарность.
В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:
Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.
Ответ: a | | b
Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:
Критерии линейной зависимости и линейной независимости систем векторов
Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.
в которой хотя бы один из коэффициентов комбинации не равен нулю.
Делим обе части равенства на ненулевой коэффициент:
Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).
Пусть один из векторов можно линейно выразить через все остальные векторы системы:
Переносим вектор e k в правую часть этого равенства:
Свойства линейно зависимых векторов
Примеры решения задач на линейную зависимость или линейную независимость векторов
Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.
Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:
x 1 a + x 2 b + x 3 c 1 = 0
Записываем векторное уравнение в виде линейного:
Решаем эту систему при помощи метода Гаусса:
Из 2-ой строки вычитаем 1-ю, из 3-ей — 1-ю:
Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:
Коллинеарные векторы
В данной публикации мы рассмотрим, какие векторы называются коллинеарными и перечислим условия, при которых они являются таковыми. Также разберем примеры решения задач по этой теме.
Условия коллинеарности векторов
Векторы, лежащие на одной или нескольких параллельных прямых, называются коллинеарными.
Два вектора коллинеарны, если выполняется одно из условий ниже:
2. Отношения координат векторов равны. Но данное условие не может применяться, если одна из координат равняется нулю.
3. Векторное произведение равно нулевому вектору (применимо только для трехмерных задач).
Примеры задач
Решение:
У заданных векторов нет нулевых координат, значит мы можем применить второе условие коллинеарности.
Задание 2
Выясним, при каком значении n векторы и коллинеарны.
Решение:
Т.к. среди координат нет нулей, согласно второму условию мы можем составить их соотношение, чтобы рассчитать недостающий элемент.
Коллинеарность векторов, условия коллинеарности векторов.
Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).
рис. 1 |
Условия коллинеарности векторов
Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что
N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.
N.B. Условие 3 применимо только для трехмерных (пространственных) задач.
Доказательство третего условия коллинеарности
Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение
Примеры задач на коллинеарность векторов
Примеры задач на коллинеарность векторов на плоскости
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:
ax | = | ay | . |
bx | by |
Вектора a и b коллинеарны т.к. | 1 | = | 2 | . |
4 | 8 |
Вектора a и с не коллинеарны т.к. | 1 | ≠ | 2 | . |
5 | 9 |
Вектора с и b не коллинеарны т.к. | 5 | ≠ | 9 | . |
4 | 8 |
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | . |
bx | by |
Решим это уравнение:
Ответ: вектора a и b коллинеарны при n = 6.
Примеры задач на коллинеарность векторов в пространстве
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:
ax | = | ay | = | az | . |
bx | by | bz |
Вектора a и b коллинеарны т.к. | 1 | = | 2 | = | 3 | . |
4 | 8 | 12 |
Вектора a и с не коллинеарны т.к. | 1 | = | 2 | ≠ | 3 | . |
5 | 10 | 12 |
Вектора с и b не коллинеарны т.к. | 5 | = | 10 | ≠ | 12 | . |
4 | 8 | 12 |
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | = | az | . |
bx | by | bz |
Из этого соотношения получим два уравнения:
3 | = | 2 |
9 | n |
3 | = | m |
9 | 12 |
Решим эти уравнения:
n = | 2 · 9 | = 6 |
3 |
m = | 3 · 12 | = 4 |
9 |
Ответ: вектора a и b коллинеарны при n = 6 и m = 4.
Онлайн калькулятор. Коллинеарность векторов.
Этот онлайн калькулятор позволит вам очень просто определить являются ли два вектора коллинеарными.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на проверку коллинеарности двух векторов и закрепить пройденый материал.
Калькулятор для вычисления коллинеарности векторов
Инструкция использования калькулятора для проверки коллинеарности векторов
Ввод даных в калькулятор коллинеарности векторов
В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора коллинеарности векторов
Теория. Коллинеарность векторов
Вектора коллинеарны если отношения их координаты равны между собой.
ax | = | ay | = | az |
bx | by | bz |
или
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.