lpwan xnb что это
СРТ: Технология узкополосной связи LPWAN XNB
Содержание
XNB (Extended Narrowband) — энергоэффективный LPWAN-протокол дальнего радиуса действия.
Запуск проекта «умного контроля» сбора и вывоза отходов на базе LPWAN XNB
15 августа 2019 года группа компаний «РТ-Инвест» (создана при участии Госкорпорации Ростех) представила пилотный проект цифровизации сбора и транспортировки коммунальных отходов на базе собственной платформы телематических сервисов. Комплекс построен на собственной инфраструктуре телематических систем с использованием протокола передачи данных LPWAN XNB, разработанного компанией «Современные Радио Технологии» («дочкой» «РТ-Инвест»). Подробнее здесь.
Описание протокола LPWAN XNB
XNB разработан для обмена данными устройств на больших распределенных территориях с минимальными затратами энергии. Подходит для построения беспроводных LPWAN-сетей для интернета вещей, M2M-телеметрии с минимальными затратами энергии.
XNB (Extended Narrowband) представляет собой переработку протокола связи на самом низком — физическом уровне. На физическом уровне для передачи сигнала в сети «СТРИЖ» используется модуляция DBPSK. По состоянию на август 2019 года ширина полосы канала передающего устройства при этом составляет 100 Гц, при минимальном битрейте в 50 бод. Узкополосный сигнал и высокая энергетика на каждый бит передаваемой информации обеспечивает энергетический потенциал канала связи (link budget) и высокую помехоустойчивость.
Сравнение LPWAN-технологий: XNB от «СТРИЖ» и NB-IoT
NarrowBand Internet of Things, NB-IoT — беспроводная технология семейства LPWAN для Интернета вещей, реализуемая на базе инфраструктуры сотовых сетей и стандартизированная консорциумом 3GPP релизом 13: LTE-Advanced Pro.
В создании релиза участвовали производители оборудования для сотовых операторов: Huawei, Ericsson, Qualcomm и Vodafone. Каждый из них преследовал свои интересы и предлагал выгодные для себя технические решения.
Содержание
Благодаря широкому распространению под NB-IoT зачастую подразумевают три разные технологии, принятые релизом 13 3GPP:
EC-GSM (EC-GSM-IoT)
Extended Coverage – GSM – Internet of Things (EC-GSM-IoT) технология основана на стандарте eGPRS. Изменения, внесенные в eGPRS, позволяют использовать большинство установленных базовых станций для общения с EC-GSM-IoT устройствами без замены или модернизации аппаратного обеспечения. Вместе с тем, заявлено, что для работы EC-GSM-IoT потребуется обновление ПО существующего оборудования.
LTE Cat-M1
LTE Cat-M1 — дополнение стандарта LTE с более высокими параметрами энергоэффективности. Заявляется, что конечные устройства LTE Cat-M1 смогут работать в LTE-сети без модернизации базовых станций.
NB-IoT
Суть NarrowBand Internet of Things (NB-IoT) заключается в использовании чипов, способных работать в сотовых сетях, но имеющих сравнительно простую логику.
Вместо выработки компромиссного решения, 3GPP включила в релиз три конкурирующих между собой технологии, выбор которой отдан на откуп производителям чипов или сотовым операторам.
Российские операторы используют оборудование, поддерживающее три технологии релиза 13 3GPP, но преобладает оборудование от Qualcomm.
Технология NB-IoT
Бизнес-модель сотовых операторов, работающих на технологии NB-IoT заключается в развитии рынка конечных IoT-устройств и предоставлении коммерческих услуг по передаче данных для решений Интернета вещей.
Так, операторы решений на NB-IoT предлагают 3 модели партнерства с поставщиками IoT-устройств:
NB-IoT выполняет роль «транспорта» — доставки данных от устройства до БС. Технология создавалась как надстройка для работы на уже существующей инфраструктуре.
В России для вещания NB-IoT могут использоваться только лицензируемые частоты в диапазоне: 890-915 МГц и 935-960 МГц при мощности передатчика до 200 мВт.
Использование выделенного спектра обеспечивает стабильность связи и защищает сеть от помех «чужих» сетей. Миллиардные затраты на покупку лицензированных частот покрываются доходами от бизнеса сотовых операторов.
В январе 2018 года ГКРЧ разрешила «большой четверке» сотовых операторов использование частот в режиме NB-IoT. Операторы смогут использовать под NB-IoT старые GSM-сети и сэкономить на покупке новых частот. Важно учитывать, что для вещания в GSM-сетях, вероятно, потребуется модернизация GSM-базовых станций (БС).
Ширина NB-IoT радиоканала равна ширине ресурс-блока LTE – 180 кГц. Это относительно высокое значение по сравнению с узкополосными LPWAN-технологиями.
Такой канал позволяет использовать NB-IoT для приложений со скоростью от 20 000 до 250 000 бит/сек.
Сравнительно высокие скорости на практике выглядят избыточными для многих IoT приложений, в частности, для одного из наиболее массовых рынков — диспетчеризации приборов учета в ЖКХ.
Высокая, относительно узкополосных LPWAN-протоколов, скорость отрицательно сказывается на других характеристиках: дальности связи, масштабируемости решений, проникающей способности.
Технология XNB от «СТРИЖ»
Коммерческая деятельность «СТРИЖ» сегодня основана на:
«СТРИЖ» разработал полный стек технологии для Интернета вещей: радиопротокол, конечные устройства, базовые станции и серверное ПО.
В основе стека технологии «СТРИЖ» лежит узкополосный, энергоэффективный и оптимизированный для межмашинного (M2M) обмена данными на больших расстояниях протокол XNB (Extended Narrow Band). XNB изначально разработан для передачи радиосигнала в спектре 868,8 МГц (не требует лицензирования) при мощности передачи до 25 мВт. При этом, XNB может работать и на лицензируемых субгигагерцовых частотах, при наличии таковых.
Из-за того, что базовые станции и конечные устройства СТРИЖ «общаются» в нелицензированном диапазоне, где в эфир выходят сотни устройств из других сетей, необходима защита от помех и коллизий — наложений сигналов.
Для их устранения «СТРИЖ» использует сверхузкополосный сигнал и специальные алгоритмы приема-передачи:
Сигнал, передаваемый устройством в полосе 100 Гц, и высокая энергетика на каждый бит передаваемой информации, вкупе с высокими показателями чувствительности приемника, обеспечивают превосходный бюджет канала связи в 174 дБм и высокую помехоустойчивость.
Скорость обмена данными в сети «СТРИЖ» составляет от 500 до 5000 бит/сек. Так как протокол XNB изначально разрабатывался для снятия и передачи небольшого объема данных с приборов учета и датчиков, указанной скорости более чем достаточно для реализации целевых задач. Масштабные проекты, реализуемые «СТРИЖ», требуют высокой автономности конечных устройств, большой дальности приемо-передачи, масштабируемости и относительно низкой стоимости внедрения.
Базовые станции
NB-IoT
Ключевые характеристики базовых станций: чувствительность, дальность связи и емкость.
В городах, по оценкам операторов, ограничивающим фактором станет не дальность, а емкость сети (способность принять и обработать сигналы от устройств-абонентов). Для его нивелирования предполагается довести плотность сети в городе до 1 базовой станции на квадратный километр, на которые приходятся всего несколько тысяч датчиков (до 4000 согласно расчетам специалистов).
Эта задача будет решаться либо за счет использования GSM-сети, либо затратами на новые БС с поддержкой NB-IoT.
Вероятно, перед операторами стоит задача модернизации некоторой части оборудования: базовые GSM-станции, выпущенные ранее 2015 года, не поддерживают стандарт NB-IoT и нуждаются в аппаратном «апгрейде». GSM-оборудование, выпущенное после 2015 года, обновляются программно.
Модернизация инфраструктуры для сетей NB-IoT будет находиться в значительной зависимости от коммерческих перспектив конкретных территорий.
Малая дальность связи будет ограничивающим фактором проникновения покрытия традиционных сотовых сетей в малонаселенных районах: селах, автомагистралях, полях.
С учетом вышеописанных факторов, перспективы распространения NB-IoT за пределами крупных городов представляются ограниченными.
XNB от «СТРИЖ»
Благодаря тому, что базовая станция «СТРИЖ» способна одновременно обрабатывать до 5 000 каналов в нелицензируемом 500 кГц диапазоне, ее емкость составляет до 1 000 000 устройств в сутки. Подтвержденный радиус действия БС — до 10 километров в условиях городской застройки и до 50 километров на открытой местности.
Базовую станцию «СТРИЖ» отличает высокий бюджет канала связи в 174 дБм. Преимущество в 10 дБ по сравнению с бюджетом NB-IoT дает трехкратное увеличение дистанции связи или дополнительные 2 бетонные стены в доме.
Улучшения, вносимые в протокол XNB, не влияют на аппаратную часть станций и вносятся на программном уровне. Обновление ПО происходит централизованно с сервера и занимает не больше минуты.
Вывод
Вследствие более низкой чувствительности, а также «фиксированного», стационарного расположения сотовых вышек, NB-IoT-станция может «слышать» не все сигналы, из-за чего появляются «слепые зоны» покрытия, особенно в труднодоступных местах. Умные счетчики не поставишь в подвал или железный шкаф, что критично для организации масштабных решений учета ресурсов в ЖКХ.
На практике это означает, что БС сотового оператора не примет показания от 20 из 100 установленных на первых этажах дома приборов учета. Эффективность и целесообразность такого решения с точки зрения пользователя снижается до нуля. При этом, телеком-оператор не будет ставить дополнительную дорогостоящую NB-IoT станцию для устранения относительно небольшого «белого пятна» на карте покрытия.
Такой подход не окупит затрат на приобретение новой БС, процедуру согласования оборудования и монтажа.
Стоимость развертывания сети для Интернета вещей
Базовые станции «СТРИЖ» не требуют лицензирования и согласований на установку. Будь то предприятие со 120 датчиками температуры в отдаленном районе или застройщик с 5 000 умными счетчиками
Проект федерального покрытия телематической сетью «СТРИЖ» для Интернета вещей на транспорте может быть реализован с помощью мобильных БС, встраиваемых в транспортные средства, и развертывания сети стационарных базовых станций — их небольшая стоимость позволяет это сделать.
Затраты на обслуживание базовой станции «СТРИЖ» составляют около 400 рублей в месяц: оплата интернет-трафика и 11 киловатт-часов электроэнергии — столько потребляет одна люминесцентная лампочка.
Вывод
Высокая стоимость оборудования, его обслуживания и неподъемная для малого и среднего бизнеса цена лицензирования радиочастот будут и дальше сдерживать развитие NB-IoT технологии.
Развертывание сети на неосвоенной операторами территории: в сельской местности, дорогах повлечет затраты на инфраструктуру, подведение коммуникаций и различные согласования (капитальное строительство сотовых вышек). Удаленные районы, очевидно, не могут быть охвачены операторами NB-IoT-сетей как минимум ближайшие 7 лет. Разворачивать сотовые сети с поддержкой NB-IoT технологии смогут только крупные сотовые операторы, и там, где это может быть экономически оправдано: в крупных городах с уверенным покрытием и развитой новой инфраструктурой сотовых сетей.
Развернуть IoT-сеть на технологии «СТРИЖ» может профильный предприниматель или организация: компания, управляющая жилым кварталом, фермерское хозяйство, или ресурсоснабжающая организация.
Низкая стоимость, малые габариты и невысокие требования к обслуживанию базовых станции «СТРИЖ» позволяют масштабно разворачивать IoT-сети на больших территориях, в том числе и вдоль автомобильных и железных дорог для транспортных приложений. Такой сценарий предусмотрен «Дорожной картой» программы «Цифровая экономика России», а также рядом индустриальных программ, связанных с повышением эффективности управления инфраструктурой и безопасностью на транспорте.
Конечные устройства
Сегодня в России решения на технологии NB-IoT предлагают несколько сотовых операторов. Однако в продаже конечного оборудования, работающего на базе NB-IoT, на крайне мало.
Препятствует распространению NB-IoT сложна архитектура решения. В предлагаемых операторами системах счетчики нужно подключать к устройствам сбора и передачи данных (УСПД) по проводам через внешние интерфейсы.
Опыт эксплуатации доказывает, что проводные соединения усложняют процесс монтажа и снижают надежность решения: выйдет из строя геркон дешевого счетчика, отойдет контакт, его перепутает электрик или намеренно оборвут жильцы.
Кроме того, из-за высоких пиковых токов в устройствах, работающих на NB-IoT, необходимо внедрять дорогую и энергоемкую батарею. Это предполагает не только удорожание решения, но и увеличение размеров устройства: такие батареи чаще всего имеют крупные габариты.
Причем работа умных устройств в решениях на NB-IoT предполагает наличие SIM-карт, что ведет к ещё большему удорожанию внедрения, путанице с пользователями и последующим затратам на абонентское обслуживание.
В свою очередь «СТРИЖ» продаёт устройства, готовые к использованию «из коробки». Счетчики и датчики со встроенными XNB-радиомодулями не отличаются по установке и пуско-наладке от стандартных традиционных устройств без связи.
Подключения УСПД и вызова специалистов-наладчиков не требуется.
Вывод
Стоимость конечных устройств
Цена NB-IoT радиомодуля (непосредственно чип плюс обвязка) начинается от 650 рублей, на крупно-оптовых партиях, вероятно, цена может быть снижена.
Цена УСПД RTU102m-NB1 с поддержкой NB-IoT — 5 000 рублей. К этой цифре необходимо добавить затраты на интеграцию с счетчиком и стоимость собственно водомера с импульсным выходом. Итоговая стоимость решения — более 6 000 рублей за 1 узел учета воды.
Другой сценарий — умные счетчики с радиомодулем NB-IoT. Например такой счетчик воды стоит порядка 4 500 рублей, что в два раза дороже устройства от «СТРИЖ» и в 6 раз дороже обыкновенных водомеров.
Так, розничная цена счетчика воды с XNB-радиомодемом «СТРИЖ» — 2 030 рублей. Продажа первых решений «СТРИЖ» по дистанционному учету коммунальных ресурсов началась в 2014 году. Спустя 3 года было реализовано и установлено почти 200 000 устройств.
Вывод
Рынок «умной» автоматизации чувствителен к стоимости и удорожанию конечных устройств: увеличение себестоимости датчика даже на 50 рублей, выпущенного миллионной серией, повлечет соответствующие расходы. В особенности это критично для решений, связанных с ЖКХ.
Готовых устройств с поддержкой NB-IoT крайне мало. УСПД дороги из-за высокой стоимости «железа» и отсутствия отлаженного крупносерийного производства. Появление устройств NB-IoT, сопоставимых по цене с устройствами других производителей, ожидается не ранее 2020-2021 года.
Массовое производство чипов, на базе которых создан радиомодуль «СТРИЖ», положительно сказалось на стоимости: они в 3-4 раза дешевле чипов для NB-IoT.
Разница в стоимости комплектующих отражается и на стоимости готовых устройств. Невысокая цена радиомодуля «СТРИЖ» обеспечивает низкую себестоимость IoT-решений, включающих десятки тысячи автономных приборов.
Идеальный сценарий использования «СТРИЖ» — стационарные и мобильные приложения на территориях или объектах, где требуется развертывание телематических сетей с высокими требованиями к проникающей способности сигнала и автономности конечных устройств.
Ведется разработка собственного LPWAN-чипа «СТРИЖ», совмещающего в себе трансивер и микроконтроллер. Создание собственного чипа упростит и максимально удешевит производство устройств «СТРИЖ».
Автономность
Диапазон скоростей передачи сигнала в сетях NB-IoT варьируется от 20 000 до 250 000 бит/сек. Мощность радиосигнала NB-IoT-устройств — 23 дБм или 200 мВт. При этом, производители заявляют о 10-летней автономности приборов. По оценкам экспертов, для обеспечения 10-летнего срока жизни прибора, с учетом температурных колебаний, потребуется батарея емкостью от 7 до 15 Втч.
Энергоэффективный протокол XNB от «СТРИЖ» отправляет сообщения со скоростью 50 бит в секунду в полосе 100 Гц. Небольшая скорость и узкополосный сигнал обеспечивают хороший бюджет связи.
Устройства «СТРИЖ» передают радиосигнал мощностью до 25 мВт. Это в 8 раз ниже мощности, излучаемой NB-IoT-радиомодемом.
Вывод
При сравнении технологий NB-IoT и XNB с точки зрения автономности конечных устройств последняя выглядит гораздо предпочтительнее.
Высокая скорость передачи снижает срок службы батареи конечных устройств — чем выше скорость, тем больше энергии расходует NB-IoT-радиомодуль.
Подтвержденный автономный срок работы XNB-счетчиков «СТРИЖ» составляет 6 лет. Столько времени уже проработали первые умные устройства в жилых кварталах Москвы и Перми.
XNB-протокол оптимален для прикладных задач съема телеметрии, требующих длительной автономной работы. Например, счетчиков ресурсов или иных датчиков, установленных в труднодоступных местах: подвалах, стояках многоквартирных домов и подземных парковках.
Развитие технологий в России
Сетевое оборудование, поддерживающее NB-IoT, производится за пределами России компанией Qualcomm и рядом других крупных иностранных вендоров.
Так, сотовые сети российских операторов — базовые станции, программное обеспечение и система управления БС, — как минимум, наполовину построены на оборудовании китайского вендора.
Технология «СТРИЖ», включая оборудование и программное обеспечение, — полностью отечественные: базовые станции собираются в Москве, конечные устройства производятся на собственных мощностях, а также на заводах российских партнеров.
Серверы компании расположены на территории России. Ведется работа по внедрению в систему шифрования согласно ГОСТ.
С 2014 года «СТРИЖ» создает и применяет российские информационные технологии и обеспечивает их конкурентоспособность на международном уровне.
Разрабатываемые и внедряемые «СТРИЖ» решения для Интернета вещей в полной мере соответствует основным положениям «Стратегии развития информационного общества в Российской Федерации на 2017-2030 годы», утвержденной Президентом, а также проекту «Умный город», входящий в госпрограмму «Цифровая экономика».
Вывод
Строить сетевую инфраструктуру на иностранном оборудовании и ПО небезопасно как по техническим, так и политическим соображениям. А так как операторы имеют обыкновение закладывать часть стоимости оборудования в последующее его обслуживание, сотовые IoT-сети могут существенно подорожать в ближайшие 3 года.
«СТРИЖ» последовательно выполняет программу Стратегии, заменяя импортное оборудование, программное обеспечение и электронную компонентную базу на российские аналоги, не уступающие, а во многом и превосходящие иностранные разработки.
Абонентская плата за использование сети
В сотовых сетях абонентская плата регулируется оператором. В России уже есть прецеденты, когда с ростом трафика увеличивались и тарифы. Для ЖКХ абонентская плата в размере 50 рублей с 1 устройства является существенной статьей дополнительных расходов, влияющей на окупаемость.
Сеть «СТРИЖ» разворачивается на недорогих базовых станциях. Клиент становится «хозяином» собственной сети. Стоимость решения «СТРИЖ» оптимизируется за счет нелицензируемого диапазона вещания и недорогого оборудования.
В рамках текущей коммерческой политики, ориентированной на сектор ЖКХ, абонентская плата с мелких и средних клиентов не взимается.
При построении сети федерального уровня, бизнес-модель, вероятно, будет предусматривать абонентскую плату или ее аналог.
Вывод
Абонентская плата за M2M-трафик и вероятность ее увеличения сдерживают крупный бизнес и организации, которые не могут зависеть от сотовых операторов: госкомпании, оборонный сектор, застройщики с тысячами приборов учета коммунальных ресурсов.
Возможность развертывания собственных сетей без абонплаты позволит и крупным компаниям, и небольшим организациям реализовывать проекты на платформе «СТРИЖ. В случае введения абонплаты при развертывании федеральной сети «СТРИЖ», ее размер будет на порядок меньше по сравнению с тарифами сотовых операторов.
Преимущества и особенности NB-IoT
Преимущества
Идеальный сценарий использования NB-IoT — стационарные и мобильные приложения в городской черте с высокими требованиями к пропускной способности канала и сравнительно терпимыми к проникающей способности и автономности.
Особенности
Перечисленные особенности приводят к тому, что NB-IoT безусловно получит определенное применение в городах с населением более 100-300 000 человек. В городах с меньшим населением, по запросу крупных клиентов возможно построить NB-IoT-сеть за 6-9 месяцев. Покрытие автомобильных и железных дорог, вероятно, не будет в приоритете.
Наиболее привлекательные приложения для NB-IoT:
Преимущества и особенности технологии «СТРИЖ»
Преимущества
Идеальный сценарий использования «СТРИЖ» — быстрое и недорогое развертывание частных или публичных сетей с большой плотностью стационарных или мобильных устройств на любой территории, независимо от коммерческих интересов традиционных сотовых операторов.
Особенности
«СТРИЖ» идеален для использования в следующих отраслях:
Что такое энергоэффективность LPWAN. Проживет ли NB-IoT устройство 10 лет от батарейки?
Привет, всем уважаемым читателям Хабра!
Я, Шептовецкий Александр, в последнее время профессионально занимаюсь различными вопросами эффективности работы различных LPWAN систем интернета вещей и хотел бы выступить на данной площадке в качестве эксперта в этой области.
В интернете можно найти очень много разнообразной информации о работе LPWAN, но, к сожалению, некоторые очень важные специфические особенности работы LPWAN освещаются самими производителями, заинтересованными показать свою технологию только в лучшем свете. У всех систем объявляется большая дальность работы, все устройства работают 10 лет от батарейки, все обещают беспрецедентную безопасность и надежность системы. Независимые же эксперты как правило просто перепечатывают рекламную информацию в виде сравнительных таблиц с набором самых разных параметров, часто не понимая, что значат эти цифры для потребителя.
Хочу анонсировать серию статей, в которых попытаюсь внести дополнительную ясность в ключевые особенности работы LPWAN систем, энергоэффективность, дальность, время работы от одной батарейки, пропускная способность, безопасность и многое другое. Постараюсь быть максимально объективным.
Первая статья будет посвящена вопросу, что такое энергоэффективность в проекции на NB-IoT решения, в следующих будем обсуждать энергоэффективность безлицензионных решений, проблемы с дальностью, пропускной способностью, безопасностью и некоторые другие аспекты.
Как померить энергоэффективность
При описании LPWAN систем постоянно используется слово энергоэффективность, что же оно означает и можно ли ее померить?
В общем случае, под энергоэффективностью понимают эффективное расходование энергии батарейки и обозначают ее как потенциально возможное время работы датчика от батарейки. Почти все производители LPWAN систем обещают до 10 лет работы от батарейки, можно ли им доверять?
Посмотрим, как определяется понятие энергоэффективность в рекомендациях международного союза электросвязи. В разделе общие положения МСЭ-T L.1310 определено, что «показатель энергоэффективности обычно определяется как отношение между функциональной единицей и энергией, требуемой для вырабатывания функциональной единицы».
Основная задача LPWAN систем это доставка на сервер коротких сообщений от датчиков, поэтому, за функциональную единицу правильно принять именно «переданное сообщение». В таком случае, в качестве параметра энергоэффективности при использовании радиоканала можно принять количество энергии, затраченное на отправку одного сообщения.
Необходимо обратить внимание на следующий факт, что энергия, затраченная на передачу сообщения зависит от времени в эфире и мощности передатчика. На фиксированную дальность можно передать быстро и с большой мощностью, а можно медленно с маленькой и затратить на это одинаковую энергию. Уменьшение скорости для увеличения дальности обычно требуется в случае ограничения мощности передатчика.
Рисунок 1. Позиционирование LPWAN
В интернете постоянно попадается картинка из трех кругов со следующим комментарием: «Любые существующие беспроводные технологии передачи данных обладают такими характеристиками как дальность, скорость и энергоэффективность. Причем одновременно можно соответствовать лишь 2-м из 3-х.».
Более точным комментарием будет: «Увеличение любого одного или двух из этих трех параметров возможно только за счет уменьшения оставшихся, их произведение остается постоянным».
Энергоэффективность х Площадь покрытия х Скорость = Constant
Энергоэффективность нельзя сравнивать для систем с разной дальностью работы. Попробуем, например, оценить энергоэффективность датчика с Bluetooth каналом. BLE маячок мощностью 0dBm с короткими сообщениями тратит на передачу с периодом 1 раз в секунду около 7 мкА, это говорит о его беспрецедентной энергоэффективности. От литиевой батарейки 1000 мАЧ он проработает до 15 лет, и передаст более 470 миллионов сообщений, потратив на каждое только 2,1 нАЧ!
Bluetooth может передать от одной батарейки в десятки тысяч раз больше сообщений, чем LoRaWAN или SigFox
Теперь посмотрим на NB-IoT.
Энергоэффективность NB-IoT
Требования стандарта 3GPP рассчитаны на то, что NB-IoT устройства будут работать от батарейки десять лет. К сожалению, реальных практических исследований в этой области очень мало. Я обратился к некоторым производителям GPS трекеров в России, которые реально используют NB-IoT и получил ответ, что по их данным: «NB-IoT действительно обеспечивает большую зону покрытия, но добиться значительного уменьшения потребления связи для передачи коротких сообщений им не удается», по их опыту потребление 2G модуля, в среднем, менее чем в 2 раза превышает потребление NB-IoT модуля. То есть NB-IoT получается выигрывает по энергетике у решений 2G не более чем в 2 раза. Выдающимся этот результат явно не назовешь, почему так получилось?
Рисунок 2. разброс энергии на передачу данных в зависимости от режима работы
Рисунок 3. Соотношение сигнал/шум
Энергоэффективность NB-IoT обеспечивается установкой соответствующих параметров конечного устройства и установками операторов сети для режима сохранения энергии PSM. На рисунках 2 и 3 ( данные взяты из публикации «Exploring the Performance Boundaries of NB-IoT») приведены примеры разброса энергии, затраченной конечным устройством в зависимости от устройств в сетях разных операторов и при разных уровнях принимаемого сигнала.
Нельзя забывать, что в NB-IoT энергия тратится не только на саму передачу информации, но и на некоторые другие специфические процедуры, присутствующие в протоколах сотовой связи и унаследованные от LTE и 5G, такие как присоединение и синхронизация с сетью, обмен ключами и шифрование данных.
Структура безопасности, используемая в NB-IoT, унаследована от сетей 4G и 5G и обеспечивает процессы фактической аутентификации между устройством и сетью, установление контекста безопасности устройства (SC), который должен быть использован в последующих сообщениях для обеспечения целостности и конфиденциальности данных.
Рисунок 4. Доля времени, потраченного на различные операции в рабочем состоянии (кроме IMSI шифрования).
Сеть может запрашивать у устройства повторную аутентификацию сколь угодно часто, даже если устройство уже подключено к сети. В некоторых случаях сеть даже обязана удалить SC устройства и запросить повторную аутентификацию при следующем подключении устройства (например, во время процесса TAU).
Устройства NB-IoT потребляют энергию в любом из трех состояний: легкий сон, глубокий сон и работа. Состояния легкого и глубокого сна соответствуют состояниям ожидания и PSM 3GPP, когда устройство потребляет мало энергии или почти не потребляет. Рабочее состояние — это состояние, во время которого устройство генерирует данные и общается с сетью и потребляет энергию на процесс установления соединения (RA), процесс присоединения, обмен данными (включая любые требуемые запросы на планирование, прием контрольных данных, шифрование / дешифрование), IMSI дешифрование и активное ожидание. При этом надежные механизмы шифрования могут быть очень энергозатратными и существенно повлияют на время автономной работы устройства.
Потребление энергии в рабочем состояние может быть на порядки больше, чем два других состояния. Фактически потребление энергии для передачи данных и прием на порядки ниже, чем при оперативном выполнении функций RA, Attach и Active Waiting.
Кроме того, NB-IoT определяет три возможных уровня связи, нормальный, надежный и экстремальный, в которых используют разные количество повторов (до 128 и 2048 повторов для восходящей и нисходящей линии связи соответственно).
На рисунке 5 приведены расчеты потребления конечных устройств для 10 лет непрерывной работы взятые из отчета «Narrowband IoTDevice Energy Consumption Characterization and Optimizations». Следует отметить, что у стандартной литиевой батарейки емкостью 1 000 мАЧ соответствует энергии около 12 КДж.
Сравнение энергоэффективности NB-IoT с безлицензионными системами получается явно не в пользу NB-IoT. Только в идеальных условиях: условиях высокого качества приема, правильно установленных оператором параметров сети, можно добиться результата не хуже, чем у безлицензионных решений. В зоне среднего качества покрытия ситуация будет другой, она отражена в таблице ниже: