log без основания что это

Логарифм. Как вычислить логарифм?

Логарифмом положительного числа \(c\) по основанию \(a\) \((a>0, a\neq1)\) называется показатель степени \(b\), в которую надо возвести основание \(a\), чтобы получить число \(c\) \((c>0)\), т.е.

Объясним проще. Например, \(\log_<2><8>\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_<2><8>=3\).

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

log без основания что это

Как вычислить логарифм?

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

в) В какую степень надо возвести \(\sqrt<5>\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

г) В какую степень надо возвести \(\sqrt<7>\), чтобы получить \(\sqrt<7>\)? В первую – любое число в первой степени равно самому себе.

В сложных случаях для вычисления логарифма удобно переводить его в показательное уравнение.

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_=b\) \(\Leftrightarrow\) \(a^=c\)

Слева воспользуемся свойствами степени: \(a^\cdot a^=a^\) и \((a^)^=a^\)

Основания равны, переходим к равенству показателей

Умножим обе части уравнения на \(\frac<2><5>\)

Получившийся корень и есть значение логарифма

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_<3><8>\).

\(4^<5x-4>\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^=c\) \(\Leftrightarrow\) \(\log_=b\)

Зеркально перевернем уравнение, чтобы икс был слева

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

Поделим уравнение на 5

Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg\).

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

Пример: Найдите значение выражения \(36^<\log_<6><5>>\)

Вот теперь спокойно пользуемся основным логарифмическим тождеством.

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_<2><4>\) равен двум. Тогда можно вместо двойки писать \(\log_<2><4>\).

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_<2><8>\), или как \(\log_<3><27>\), или как \(\log_<4><64>\)… Здесь мы как аргумент пишем основание в кубе:

Источник

Определение логарифма и его свойства: теория и решение задач

log без основания что этоПо мере развития общества, усложнения производства развивалась и математика. Движение от простого к сложному. От обычного учёта методом сложения и вычитания, при их многократном повторении, пришли к понятию умножения и деления. Сокращение многократно повторяемой операции умножения стало понятием возведения в степень. Первые таблицы зависимости чисел от основания и числа возведения в степень были составлены ещё в VIII веке индийским математиком Варасена. С них и можно отсчитывать время возникновения логарифмов.

Исторический очерк

Возрождение Европы в XVI веке стимулировало и развитие механики. Требовался большой объем вычисления, связанных с умножением и делением многозначных чисел. Древние таблицы оказали большую услугу. Они позволяли заменять сложные операции на более простые – сложение и вычитание. Большим шагом вперёд стала работа математика Михаэля Штифеля, опубликованная в 1544 году, в которой он реализовал идею многих математиков. Что позволило использовать таблицы не только для степеней в виде простых чисел, но и для произвольных рациональных.

В 1614 году шотландец Джон Непер, развивая эти идеи, впервые ввёл новый термин «логарифм числа». Были составлены новые сложные таблицы для расчёта логарифмов синусов и косинусов, а также тангенсов. Это сильно сократило труд астрономов.

Стали появляться новые таблицы, которые успешно использовались учёными на протяжении трёх веков. Прошло немало времени, прежде чем новая операция в алгебре приобрела свой законченный вид. Было дано определение логарифма, и его свойства были изучены.

Только в XX веке с появлением калькулятора и компьютера человечество отказалось от древних таблиц, успешно работавших на протяжении XIII веков.

Определение логарифма

log без основания что этоСегодня мы называем логарифмом b по основанию a число x, которое является степенью числа а, чтобы получилось число b. В виде формулы это записывается: x = log a(b).

Например, log 3(9) будет равен 2. Это очевидно, если следовать определению. Если 3 возвести в степень 2, то получим 9.

Так, сформулированное определение ставит только одно ограничение, числа a и b должны быть вещественными.

Разновидности логарифмов

Классическое определение носит название вещественный логарифм и фактически является решением уравнения a x = b. Вариант a = 1 является пограничным и не представляет интереса. Внимание: 1 в любой степени равно 1.

Вещественное значение логарифма определено только при основании и аргументе больше 0, при этом основание не должно равняться 1.

Особое место в области математики играют логарифмы, которые будут называться в зависимости от величины их основания:

Правила и ограничения

Основополагающим свойством логарифмов является правило: логарифм произведения равен логарифмической сумме. log abp = lоg a(b) + log a(p).

Из предыдущих двух правил легко видно, что: lоg a(b p ) = p * log a(b).

Среди других свойств можно выделить:

Замечание. Не надо делать распространённую ошибку — логарифм суммы не равен сумме логарифмов.

Как найти логарифм

log без основания что этоМногие века операция поиска логарифма была довольно трудоёмкой задачей. Математики пользовались известной формулой логарифмической теории разложения на многочлен:

Логарифмы с другими основаниями вычислялись, используя теорему о переходе от одного основания к другому и свойстве логарифма произведения.

Так как этот способ очень трудоёмкий и при решении практических задач трудноосуществим, то использовали заранее составленные таблицы логарифмов, что значительно ускоряло всю работу.

В некоторых случаях использовали специально составленные графики логарифмов, что давало меньшую точность, но значительно ускоряло поиск нужного значения. Кривая функции y = log a(x), построенная по нескольким точкам, позволяет с помощью обычной линейки находить значения функции в любой другой точке. Инженеры длительное время для этих целей использовали так называемую миллиметровую бумагу.

В XVII веке появились первые вспомогательные аналоговые вычислительные условия, которые к XIX веку приобрели законченный вид. Наиболее удачное устройство получило название логарифмическая линейка. При всей простоте устройства, её появление значительно ускорило процесс всех инженерных расчётов, и это переоценить трудно. В настоящее время уже мало кто знаком с этим устройством.

Появление калькуляторов и компьютеров сделало бессмысленным использование любых других устройств.

Уравнения и неравенства

Для решения различных уравнений и неравенств с использованием логарифмов применяются следующие формулы:

Для решения неравенств полезно знать:

Примеры задач

Рассмотрим несколько вариантов применения логарифмов и их свойства. Примеры с решением уравнений:

Рассмотрим вариант размещения логарифма в степени:

Практическое применение

Являясь исключительно математическим инструментом, кажется далёким от реальной жизни, что логарифм неожиданно приобрёл большое значение для описания объектов реального мира. Трудно найти науку, где его не применяют. Это в полной мере относится не только к естественным, но и гуманитарным областям знаний.

Логарифмические зависимости

Приведём несколько примеров числовых зависимостей:

Механика и физика

Исторически механика и физика всегда развивались с использованием математических методов исследования и одновременно служили стимулом для развития математики, в том числе логарифмов. Теория большинства законов физики написана языком математики. Приведём только два примера описания физических законов с использованием логарифма.

Решать задачу расчёта такой сложной величины как скорость ракеты можно, применяя формулу Циолковского, которая положила начало теории освоения космоса:

Другой важный пример — это использование в формуле другого великого учёного Макса Планка, которая служит для оценки равновесного состояния в термодинамике.

Химия

Менее очевидным будет использования формул в химии, содержащих отношение логарифмов. Приведём тоже только два примера:

Психология и биология

log без основания что этоИ уж совсем непонятно при чём здесь психология. Оказывается, сила ощущения хорошо описывается этой функцией как обратное отношение значения интенсивности раздражителя к нижнему значению интенсивности.

После вышеприведённых примеров уже не удивляет, что и в биологии широко используется тема логарифмов. Про биологические формы, соответствующие логарифмическим спиралям, можно писать целые тома.

Другие области

Кажется, невозможно существование мира без связи с этой функцией, и она правит всеми законами. Особенно, когда законы природы связаны с геометрической прогрессией. Стоит обратиться к сайту МатПрофи, и таких примеров найдётся множество в следующих сферах деятельности:

Список может быть бесконечным. Освоив основные закономерности этой функции, можно окунуться в мир бесконечной мудрости.

Источник

Логарифм (понятие).

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени, в которую надо возвести число a, чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= logα b, равнозначно решению уравнения a x =b.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log72, ln5, lg0.0001.

А записи lg(-3), log-33.2, log-1-4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число, во второй – отрицательное число в основании, а в третьей – и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Возьмем условие a≠1. Поскольку единица в любой степени равна единице, то равенство x=logα b может существовать лишь при b=1, но при этом log1 1 будет любым действительным числом. Для исключения этой неоднозначности и берется a≠1.

Докажем необходимость условия a>0. При a=0 по формулировке логарифма может существовать только при b=0. И соответственно тогда log00 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0. А при a 0.

И последнее условие b>0 вытекает из неравенства a>0, поскольку x=logα b, а значение степени с положительным основанием a всегда положительно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями, которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

Источник

Что такое логарифм. Как посчитать логарифм. Свойства логарифмов. Примеры решения логарифмов

log без основания что это

Многие школьники считают логарифмы сложной темой в курсе математики. Но если разобрать, что такое логарифм подробно, от простого к сложному, то на ЕГЭ вы не станете их опасаться.

Часто у учеников возникает путаница, где аргумент, а где основание логарифма. И что же нужно возвести в степень, чтобы этот логарифм, наконец, посчитать.

В этой статье мы откроем секрет, как легче запомнить принцип решения логарифма.

Итак, давайте разбираться, что такое логарифм.

Что такое логарифм и как его посчитать

Логарифм имеет следующий вид:

log без основания что этогде a – это основание логарифма,

b – это аргумент логарифма

Чтобы узнать значение логарифма приравняем его к X.log без основания что этои преобразовываем вlog без основания что этоЗапомните, что именно основание (оно выделено красным) возводится в степень.

Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!

log без основания что это

Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:log без основания что этоА в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:

log без основания что этоЕще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.

log без основания что это

Логарифмы со специальным обозначением

Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.

Десятичный логарифм

Десятичный логарифм обозначается lg и имеет основание 10, т.е.

log без основания что этоЧтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.

Например, вычислим lg100log без основания что это

Натуральный логарифм

Натуральный логарифм обозначается ln и имеет основание e, то есть

log без основания что это

Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…

Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что

log без основания что это

И вычислить его можно таким образом:log без основания что это

Основные свойства логарифмов

Логарифмы можно преобразовывать, но для этого необходимо знать правила, которые называются основными свойствами логарифмов. Данные свойства обязательно нужно знать каждому ученику! Без знания этих свойств невозможно решить ни одну серьезную логарифмическую задачу. Вот эти свойства:

log без основания что это

Совет – тренируйтесь применять эти свойства в обе стороны, то есть как слева направо, так и справа налево!

Рассмотрим свойства логарифмов на примерах.

Логарифмический ноль и логарифмическая единица

log без основания что это

Это следствия из определения логарифма. И их нужно обязательно запомнить. Эти простейшие свойства нередко вводят учеников в ступор.

Запомните, что логарифм от a по основанию а всегда равен единице:

loga a = 1 – это логарифмическая единица.

Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a 0 = 1:

loga 1 = 0 – логарифмический ноль.

Основное логарифмическое тождество

log без основания что это

log без основания что это

В первой формуле число m становится степенью, которая стоит в аргументе. Данное число может быть любым. Некоторые выражения могут быть решены только с помощью этого тождества.

Вторая формула по сути является просто переформулированным определением логарифма

Разберем применение тождества на примере:

Необходимо найти значение выраженияlog без основания что этоСначала преобразуем логарифм

log без основания что этоВернемся к исходному выражению и применим правило умножения степеней с одинаковым основанием:log без основания что этоТеперь применим основное логарифмическое тождество и получим:log без основания что это

Сумма логарифмов. Разница логарифмов

Логарифмы с одинаковыми основаниями можно складывать:log без основания что этоlog без основания что этоЛогарифмы с одинаковыми основаниями можно вычитать:log без основания что этоlog без основания что этоМы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!

Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!

Вынесение показателя степени из логарифма

Вынесение показателя степени из логарифма:

log без основания что этоlog без основания что этоlog без основания что этоlog без основания что это

Переход к новому основанию

log без основания что этоКогда мы разбирали формулы суммы и разности логарифмов, то обращали внимание на то, что основания логарифмов должны быть при этом одинаковыми. А что же делать, если основания логарифмов разные? Воспользоваться свойством перехода к новому основанию.

Такие формулы чаще всего нужны при решении логарифмических уравнений и неравенств.

Разберем на примере.

Необходимо найти значение такого выраженияlog без основания что этоДля начала преобразуем каждый логарифм с помощью свойства вынесения показателя степени из логарифма:

log без основания что это

Теперь применим переход к новому основанию для второго логарифма:log без основания что этоПодставим полученные результаты в исходное выражение:log без основания что это

10 примеров логарифмов с решением

1. Найти значение выраженияlog без основания что это2. Найти значение выраженияlog без основания что это3. Найти значение выраженияlog без основания что это4. Найти значение выраженияlog без основания что это5. Найти значение выраженияlog без основания что это6. Найти значение выраженияlog без основания что этоСначала найдем значениеlog без основания что этоДля этого приравняем его к Х:log без основания что этоТогда изначальное выражение принимает вид:

log без основания что это7. Найти значение выраженияlog без основания что этоПреобразуем наше выражение:log без основания что этоТеперь воспользуемся свойством вынесения показателя степени из логарифма и получим: log без основания что это8. Найти значение выраженияlog без основания что этоТак как основания логарифмов одинаковые, воспользуемся свойством разности логарифмов:log без основания что это9. Найти значение выраженияlog без основания что этоТак как основания логарифмов разные, применять свойство суммы логарифмов нельзя. Поэтому решаем каждый логарифм по отдельности:log без основания что этоПодставляем полученные значения в исходное выражение:

10. Найти значение выраженияlog без основания что этоОбращаем внимание, что данное выражение – это не произведение логарифмов. У логарифма по основанию 4 подлогарифным выражением является log216. Поэтому сначала найдем значение log216, а затем подставим полученный результат в log4:log без основания что это

Надеюсь, теперь вы разобрались, что такое логарифм.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *