какой отрезок называется проекцией наклонной

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №10. Перпендикуляр и наклонные

Перечень вопросов, рассматриваемых в теме.

Теорема о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.

Обратная теорема: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции.

Определение: углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.

Атанасян Л. С., Бутузов В. Ф. Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.

Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения

Рассмотрим плоскость α и точку А, не лежащую в этой плоскости (рис. 1). Проведем через точку А прямую, перпендикулярную к плоскости α, и обозначим буквой Н точку пересечения этой прямой с плоскостью α. Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости α, а точка Н — основанием перпендикуляра. Отметим в плоскости α какую-нибудь точку М, отличную от Н, и проведем отрезок AM. Он называется наклонной, проведенной из точки А к плоскости α, а точка М – основанием наклонной. Отрезок НМ называется проекцией наклонной на плоскость α.

Источник

Перпендикуляр и наклонная. Расстояние от прямой до плоскости

Перпендикуляром, опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.

Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной. Отрезок, соединяющий основания перпендикуляра наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

какой отрезок называется проекцией наклонной

Пер­вый спо­соб.

Имеем квад­рат, центр квад­ра­та точка – О, – пер­пен­ди­ку­ляр. Зна­чит, для на­клон­ной SC от­ре­зок ОС есть про­ек­ция.

Пря­мая ВD пер­пен­ди­ку­ляр­на пря­мой ОС, ко­то­рая яв­ля­ет­ся про­ек­ци­ей на­клон­ной SC, зна­чит, по тео­ре­ме о трех пер­пен­ди­ку­ля­рах, пря­мая ВD пер­пен­ди­ку­ляр­на на­клон­ной SC.

Вто­рой спо­соб.

Пря­мая пер­пен­ди­ку­ляр­на плос­ко­сти АВС, а зна­чит – и пря­мой ВD, ле­жа­щей в ней.

Пря­мая ВD пер­пен­ди­ку­ляр­на и пря­мая ВD пер­пен­ди­ку­ляр­на пря­мой АС по свой­ству квад­ра­та.

По­лу­ча­ем, что пря­мая ВD пер­пен­ди­ку­ляр­на двум пе­ре­се­ка­ю­щим­ся пря­мым плос­ко­сти SОС, зна­чит, она пер­пен­ди­ку­ляр­на ко всей плос­ко­сти SОС, а зна­чит – и к пря­мой SC, ле­жа­щей в этой плос­ко­сти.

Расстояние от точки до плоскости есть перпендикуляр, опущенный на эту плоскость, то есть расстояние от точки А до плоскости a, есть длина перпендикуляра АВ.

В единичном тетраэдре DABC найдите расстояние от точки C до плоскости ADB.

Основанием прямого параллелепипеда служит параллелограмм с углом 120 \(^\circ\) и сторонами, равными 3 и 4. Меньшая диагональ параллелепипеда равна большей диагонали основания. Найдите объем параллелепипеда.

Расстояние от точки М до каждой из вершин правильного треугольника ABC равно 4 см. Найдите расстояние от точки М до плоскости ABC, если АВ = 6 см.

Через вершину А прямоугольника АВСD проведена прямая АК, перпендикулярная его плоскости. Расстояния от точки К до других вершин прямоугольника равны 12 м, 14 м, 18 м. Найдите отрезок АК.

Отрезок АD перпендикулярен к плоскости равнобедренного треугольника АВС.

АВ = АС = 10 см, ВС = 12 см, AD = 6 см.

Найдите расстояние от точки D до ВС.

Через вершину прямоугольника ABCD проведена прямая АК, перпендикулярная к плоскости прямоугольника.

Источник

Перпендикуляр и наклонная к прямой

1. Проекция отрезка на прямую.

Если через какую-нибудь точку, взятую вне прямой, провести прямую, перпендикулярную к ней, то отрезок от данной точки до прямой для краткости называют одним словом перпендикуляр.

какой отрезок называется проекцией наклонной

Если прямая, проведённая через данную точку, пересекает другую прямую, но не перпендикулярна к ней, то отрезок её от данной точки до точки пересечения с другой прямой называют наклонной к этой прямой.

Если из концов какого-нибудь отрезка опустим перпендикуляры на произвольную прямую, то отрезок прямой, заключённый между основаниями перпендикуляров, называется проекцией отрезка на эту прямую.

какой отрезок называется проекцией наклонной

Проекцией отрезка КР, перпендикулярного к ЕС, будет точка К&#146 (рис.).

2. Свойства перпендикуляра и наклонных.

Теорема 1. Перпендикуляр, проведённый из какой-нибудь точки к прямой, меньше всякой наклонной, проведённой из той же точки к этой прямой.

какой отрезок называется проекцией наклонной

В ΔМАС отрезок АМ является гипотенузой, а гипотенуза больше каждого из катетов этого треугольника. Следовательно, АМ > АС. Так как наклонная АМ взята нами произвольно, то можно утверждать, что всякая наклонная к прямой больше перпендикуляра к этой прямой (а перпендикуляр короче всякой наклонной), если они проведены к ней из одной и той же точки.

Верно и обратное утверждение, а именно: если отрезок АС (рис.) меньше всякого другого отрезка, соединяющего точку АС любой точкой прямой ОВ, то он является перпендикуляром к ОВ. В самом деле, отрезок АС не может быть наклонной к ОВ, так как тогда он не был бы самым коротким из отрезков, соединяющих точку А с точками прямой ОВ. Значит, он может быть только перпендикуляром к ОВ.

Длина перпендикуляра, опущенного из данной точки на прямую, принимается за расстояние от данной точки до этой прямой.

какой отрезок называется проекцией наклонной

Теорема 3 (обратная). Если две наклонные, проведённые к прямой из одной и той же точки, имеют равные проекции, то они равны между собой.

Требуется доказать, что АС = ВС.

какой отрезок называется проекцией наклонной

Теорема 4. Если из одной и той же точки проведены к прямой две наклонные, то та из них больше, которая имеет большую проекцию на эту прямую.

1) Наклонные расположены по одну сторону перпендикуляра.

Угол АСЕ внешний по отношению к прямоугольному треугольнику СОВ (рис.), а поэтому ∠АСВ > ∠СОВ, т. е. он тупой. Отсюда следует, что АВ > СВ.

какой отрезок называется проекцией наклонной

2) Наклонные расположены по обе стороны перпендикуляра. Для доказательства отложим на АО от точки О отрезок ОК = ОС и соединим точку К с точкой В (рис.). Тогда по теореме 3 имеем: ВК = ВС, но АВ > ВК, следовательно, АВ > ВС, т. е. теорема справедлива и в этом случае.

Теорема 5 (обратная). Если из одной и той же точки проведены к прямой две наклонные, то большая наклонная имеет и большую проекцию на эту прямую.

какой отрезок называется проекцией наклонной

Между отрезками КО и ОВ может быть только одно из трёх соотношений:

КО не может быть меньше ОВ, так как тогда по теореме 4 наклонная КС была бы меньше наклонной ВС, а это противоречит условию теоремы.

Точно так же КО не может равняться ОВ, так как в этом случае по теореме 3 КС = ВС, что также противоречит условию теоремы.

Следовательно, остаётся верным только последнее соотношение, а именно, что КО > ОВ.

Источник

Определение перпендикуляра и наклонной

какой отрезок называется проекцией наклонной

1) Определение перпендикуляра и наклонной.

Пусть дана плоскость и не лежащая на ней точка.

· Отрезок прямой, перпендикулярной плоскости, соединяющий данную точку с точкой на плоскости называется перпендикуляром из данной точки к данной плоскости.

· Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

· Любой отрезок, соединяющий данную точку с точкой на плоскости и не являющийся перпендикуляром к плоскости, называется наклонной.

· Конец отрезка, лежащий в плоскости, называется основанием наклонной.

какой отрезок называется проекцией наклонной

2) Доказательство того, что перпендикуляр корочек наклонной

На рисунке 2 изображена плоскость α, перпендикуляр к ней AO, наклонная AB, а также показан отрезок BO, соединяющий основания наклонной и перпендикуляра. Отрезки AO, BO и AB образуют ΔAOB.

какой отрезок называется проекцией наклонной

Рассмотрим ΔAOB, из определения перпендикуляра следует, что он прямоугольный. Перпендикуляр AO является катетом этого треугольника, а наклонная AB – его гипотенузой. Катет прямоугольного треугольника всегда меньше его гипотенузы (по теореме Пифагора), следовательно, перпендикуляр всегда короче наклонной.

3) Определение проекции

Отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

Отрезок BO на рисунке 2 – является проекцией наклонной AB.

4) Теорема о сравнительной длине наклонных и их проекций

А) Любая наклонная больше своей проекции.

Вновь рассмотрим ΔAOB, изображенный на рис. 2, из определения перпендикуляра следует, что он прямоугольный. Проекция BO является катетом этого треугольника, а наклонная AB – его гипотенузой, т. к. катет прямоугольного треугольника всегда меньше его гипотенузы, следовательно, проекция наклонной на плоскость всегда короче самой наклонной.

Б) Равные наклонные имеют равные проекции

Доказательство: Рассмотрим треугольники AOB и AOD, они равны, т. к. равны их гипотенузы AB и AD, и углы AOB и AOD (они прямые), а сторона AO у них общая. Из равенства треугольников следует и равенство их сторон BO = OD, что и требовалось доказать.

какой отрезок называется проекцией наклонной

В) Если проекции наклонных равны, то и наклонные равны. Доказывается аналогично утверждению Б.

Г) Большей наклонной соответствует большая проекция.

Рассмотрим прямоугольные треугольники AOB и AOD, AB > AD.

какой отрезок называется проекцией наклонной= какой отрезок называется проекцией наклонной

какой отрезок называется проекцией наклонной= какой отрезок называется проекцией наклонной

Но так как AB > AD => AB2 > AD2 => какой отрезок называется проекцией наклонной> какой отрезок называется проекцией наклонной=>

=> BO > DO. Что и требовалось доказать.

какой отрезок называется проекцией наклонной

Д) Из двух наклонных больше та, у которой проекция больше. Доказывается аналогично Г.

Источник

Наклонная к прямой

Что такое наклонная к прямой? Сколько наклонных можно провести из одной точки к данной прямой? Как найти расстояние между основаниями наклонных?

Наклонной, проведенной из точки A к прямой a, называется отличный от перпендикуляра отрезок, соединяющий точку A с некоторой точкой на прямой a.

какой отрезок называется проекцией наклонной

Рисунок наклонной, проведенной из данной точки к данной прямой, начинают с изображения перпендикуляра (даже если в условии задачи о перпендикуляре не упоминается).

Чтобы нарисовать наклонную, нужно соединить точку, из которой проводится наклонная, с любой точкой на данной прямой.

На рисунке 1 AB — перпендикуляр, проведенный из точки A к прямой a, AC — наклонная.

Точка B — основание перпендикуляра, точка C — основание наклонной AC.

Отрезок BC, соединяющий основание перпендикуляра с основанием наклонной, — проекция наклонной AC на прямую a.

Из точки к прямой можно провести бесконечно много наклонных.

Две наклонные проведенные из данной точки к данной прямой, могут быть расположены как по одну сторону от перпендикуляра, так и по разные стороны от него.

какой отрезок называется проекцией наклонной

На рисунке 2 наклонные AC и AD расположены по одну сторону от перпендикуляра AB.

BC — проекция наклонной AC на прямую a,

BD — проекция наклонной AD на прямую a.

CD — расстояние между основаниями наклонных

Если наклонные расположены по одну сторону от перпендикуляра, чтобы найти расстояние между основаниями наклонных, надо найти разность между длинами их проекций.

какой отрезок называется проекцией наклонной

На рисунке 3 наклонные AC и AD расположены по разные стороны от перпендикуляра AB.

BC — проекция наклонной AC на прямую a,

BD — проекция наклонной AD на прямую a.

CD — расстояние между основаниями наклонных

Если наклонные расположены по разные стороны от перпендикуляра, расстояние между основаниями наклонных равно сумме длин проекций этих наклонных.

В следующий раз рассмотрим свойства наклонных.

2 Comments

Если наклонные расположены по разные стороны от перпендикуляра, расстояние между основаниями наклонных равно сумме длин проекций этих наклонных.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *