какой остаток при делении на 3 дает число вида 3k 2 где k z

Какой остаток при делении на 3 дает число вида 3k 2 где k z

ВНИМАНИЕ! В связи с новой волной пандемии и шумом вокруг вакцинации агрессивные антивакцинаторы банятся без предупреждения, а их особенно мракобесные комментарии — скрываются.

Основные условия публикации

— Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

— Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

— Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

— Видеоматериалы должны иметь описание.

— Названия должны отражать суть исследования.

— Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.

Не принимаются к публикации

Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

— Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

— Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.

— Оскорбления, выраженные лично пользователю или категории пользователей.

— Попытки использовать сообщество для рекламы.

— Многократные попытки публикации материалов, не удовлетворяющих правилам.

— Нарушение правил сайта в целом.

Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.

Источник

math4school.ru

какой остаток при делении на 3 дает число вида 3k 2 где k z

какой остаток при делении на 3 дает число вида 3k 2 где k z

какой остаток при делении на 3 дает число вида 3k 2 где k z

какой остаток при делении на 3 дает число вида 3k 2 где k z

какой остаток при делении на 3 дает число вида 3k 2 где k z

какой остаток при делении на 3 дает число вида 3k 2 где k z

какой остаток при делении на 3 дает число вида 3k 2 где k z

какой остаток при делении на 3 дает число вида 3k 2 где k z

Делимость целых чисел и остатки

какой остаток при делении на 3 дает число вида 3k 2 где k z

Немного теории

В разнообразных задачах про целые числа используются основные понятия и теоремы, связанные с делимостью. Приведём некоторые из них.

Каждое целое число а можно разделить на натуральное число m с остатком, то есть представить в виде а = mq + r, где q и r – целые числа и r (остаток) не меньше 0, но меньше q.

Среди любых m последовательных целых чисел найдется ровно одно число, делящееся на m.

какой остаток при делении на 3 дает число вида 3k 2 где k z

Если два числа а и b при делении на число m дают одинаковые остатки, то говорят, что а сравнимо с b по модулю m. Записывают это так

какой остаток при делении на 3 дает число вида 3k 2 где k z

Если a > b, то наибольший общий делитель a и b равен наибольшему общему делителю a – b и b.

Если а и b – натуральные числа и а = bq + r (r – остаток), то наибольший общий делитель d этих чисел равен наибольшему общему делителю b и r; пользуясь этим утверждением несколько раз, можно найти его как последний не равный нулю остаток в цепочке делений с остатком:

(алгоритм Евклида); отсюда следует, что существуют целые числа х и у, такие, что d = ах + by. В частности, если числа а и b взаимно просты, то есть не имеют общих делителей, больших 1, то существуют целые х и у, для которых ах + by = 1.

Каждое натуральное число единственным образом представляется в виде произведения простых чисел (основная теорема арифметики).

Количество простых чисел бесконечно; доказательство этого утверждения по Евклиду основано на том, что произведение нескольких простых чисел, сложенное с единицей, имеет отличные от всех этих простых чисел множители.

Задачи с решениями

1. Сколько существует натуральных чисел, меньших 1000, которые не делятся ни на 5, ни на 7?

Вычёркиваем из 999 чисел, меньших 1000, числа, кратные 5: их [999/5]=199. Далее вычёркиваем числа, кратные 7: их [999/7]=142. Но среди чисел, кратных 7, имеется [999/35]=28 чисел, одновременно кратных 5; они будут вычеркнуты дважды. Итого, нами должно быть вычеркнуто 199+142–28=313 чисел. Остаётся 999–313=686.

2. Номер автобусного билета – шестизначное число. Билет называется счастливым, если сумма трёх первых цифр номера равна сумме последних трёх цифр. Докажите, что сумма всех номеров счастливых билетов делится на 13.

Если счастливый билет имеет номер А, то билет с номером В=999999–А также счастливый, при этом А и В различны. Поскольку А+В=999999=1001·999=13·77·99 делится на 13, то и сумма номеров всех счастливых билетов делится на 13.

3. Докажите, что сумма квадратов трёх целых чисел не может при делении на 8 дать в остатке 7.

Любое целое число при делении на 8 имеет остатком одно из следующих восьми чисел 0, 1, 2, 3, 4, 5, 6, 7, поэтому квадрат целого числа имеет остатком при делении на 8 одно из трёх чисел 0, 1, 4. Чтобы при делении на 8 сумма квадратов трёх чисел имела остаток 7, необходимо, чтобы выполнялся один из двух случаев: либо один из квадратов, либо все три при делении на 8 имеют нечётные остатки.

В первом случае нечётный остаток есть 1, а сумма двух чётных остатков равна 0, 2, 4, то есть сумма всех остатков равна 1, 3, 5. Остатка 7 в этом случае получить нельзя. Во втором случае три нечётных остатка это три 1, и остаток всей суммы равен 3. Итак, 7 не может быть остатком при делении на 8 суммы квадратов трёх целых чисел.

4. Докажите, что при любом натуральном n:

а) число 5 5n+1 + 4 5n+2 + 3 5n делится на 11.

б) число 2 5n+3 + 5 n ·3 n+2 делится на 17.

а) Первоначально выполним следующее преобразование заданного выражения:

Принимая во внимание бином Ньютона n-й степени, можно записать: (х+1) n = Ах+1, где А – некоторое целое число при целых х. Тогда приведённое выше выражение принимает вид 11В+5+16+1 = 11С, очевидно делящееся на 11, где В и С – некоторые целые числа.

б) Выполним следующие преобразования, из которых следует доказываемое утверждение:

2 5n+3 + 5 n ·3 n+2 = 8·32 n + 9·15 n = 8(17+15) n + 9·15 n = 17А + 8·15 n + 9·15 n = 17А + 17·15 n = 17В,

где А, В – целые положительные числа.

а) если х 2 +у 2 делится на 3 и числа х, у целые, то х и у делятся на 3;

б) если сумма трёх целых чисел делится на 6, то и сумма кубов этих чисел делится на 6;

в) если p и q простые числа и p>3, q>3, то p 2 –q 2 делится на 24;

г) если a, b, c – любые целые числа, то найдутся такие взаимно простые k и t, что ak+bt делится на c.

Таким образом, х=3а и у=3b, то есть х и у делятся на 3, что и требовалось доказать.

б) Достаточно показать, что x 3 +y 3 +z 3 –(x+y+z) делится на 6. Это так и есть, ведь каждое из слагаемых x 3 –x, y 3 –y и z 3 –z делится на 6, поскольку а 3 –а=а(а–1)(а+1) – произведение трёх последовательных целых чисел, которое обязательно делится на 2, 3, а, значит, и 6.

в) Кратность p 2 –q 2 числу 3 можно доказать так. При делении на 3 квадраты целых чисел дают остатки 0 или 1. Так как p и q простые числа больше 3, то это p 2 и q 2 при делении на 3 имеют одинаковые остатки – единицу. Тогда p 2 –q 2 делится на 3.

С другой стороны, p 2 –q 2 =(p+q)(p–q). Так как p и q нечётные и при делении на 4 имеют остатки 1 или 3, то выражение в одних скобках делится на 4, а в других – на 2, а разность квадратов p и q – на 8.

Так как p 2 –q 2 делится на взаимно простые числа 3 и 8, то p 2 –q 2 делится на 3·8=24, что и требовалось доказать.

г) Пусть наибольший общий делитель чисел b и c–a равен d, b=k·d и c–a=t·d. Тогда числа k и t взаимно просты.

Итак, a·k+b·t делится на c.

а) наибольший общий делитель чисел 2n+3 и n+7;

б) все пары натуральных чисел х, у таких, что 2х+1 делится на у и 2у+1 делится на х;

в) все целые k, для которых k 5 +3 делится на k 2 +1;

а) Заметим, что если m > n, то НОД (m; n) = НОД (m – n; n).

Иначе говоря, наибольший общий делитель двух натуральных чисел равен наибольшему общему делителю модуля их разности и меньшего числа. Легко доказать это свойство.

Пусть k – общий делитель m u n (m > n). Это значит, что m = ak, n = bk, где a, b – натуральные числа, причем a > b. Тогда m – n = k(a – b), откуда следует, что k – делитель числа m – n. Значит, все общие делители чисел m и n являются делителями их разности m – n, в том числе и наибольший общий делитель.

НОД (2n+3; n+7) = НОД (n+7; 2n+3 – (n+7)) = НОД (n+7; n–4) = НОД (n–4; 11).

Так как 11 – простое число, то искомый наибольший общий делитель равен 1 либо 11. Если n–4 = 11d, то есть n = 4+11d, то наибольший общий делитель равен 11, в противном случае – 1.

Ответ: НОД (2n+3; n+7) = 11, при n равных 4+11d; НОД (2n+3; n+7) = 1, при n не равных 4+11d.

б) Число 2х+1 нечётное и делится на у, поэтому у тоже нечётное. Аналогично х – нечётное.

Числа х и у взаимно простые. Действительно, пусть k – общий делитель х и у, тогда 2х делится на k, и (2х+1) тоже делится на k (k – делитель у, а у – делитель 2х+1). Значит, 1 делится на k, то есть k=1.

Число 2х+2у+1 делится и на х и на у, а значит, – на ху. Тогда 2х+2у+1 не меньше ху.

Пусть х 5 +3 = (k 3 –k)( k 2 +1) + (k+3), то k 5 +3 делится на k 2 +1, если k+3 делится на k 2 +1. Когда это возможно? Рассмотрим варианты:

1) k+3 = 0, а значит k = –3;

2) k+3 = k 2 +1; решая, находим k = –1, k = 2;

3) проверим целые k при которых k+3 > k 2 +1; после проверки: k = 0, k = 1.

г) пусть m = 2·3·5·7·k. Подбирая k так, чтобы m–1 делилось на 11, а m+1 – на 13, получим, что число n = m–10 удовлетворяет условию задачи.

7. Существует ли десятизначное число, делящееся на 11, в записи которого каждая цифра встречается по одному разу?

I способ. Выписывая трёхзначные числа, делящиеся на 11, можно среди них найти три числа, в записи которых участвуют все цифры от 0 до 9. Например, 275, 396,418. С их помощью можно составить десятизначное число, делящееся на 11. Например:

2753964180 = 275·10 7 + 396·10 7 + 418·10 = 11·(25·10 7 + 36·10 4 + 38·10).

II способ. Для нахождения требуемого числа воспользуемся признаком делимости на 11, согласно которому числа n=a1a2a3…a10 (в данном случае аi не множители, а цифры в записи числа n) и S(n)=a1–a2+a3–…–a10 одновременно делятся на 11.

Пусть А – сумма цифр, входящая в S(n) со знаком «+», В – сумма цифр, входящая в S(n) со знаком «–». Число А–В, согласно условию задачи, должно делиться на 11. Положим В–А=11, кроме того, очевидно, А+В=1+2+3+…+9=45. Решая полученную систему В–А=11, А+В=45, находим, А=17, В=28. Подберём группу из пяти различных цифр с суммой 17. Например, 1+2+3+5+6=17. Эти цифры возьмём в качестве цифр с нечётными номерами. В качестве цифр с чётными номерами возьмём оставшиеся – 4, 7, 8, 9, 0.

Мы видим, что условию задачи удовлетворяет, например, число 1427385960.

8. Два двузначных числа, записанных одно за другим, образуют четырёхзначное число, которое делится на их произведение. Найти эти числа.

Пусть a и b – два двузначных числа, тогда 100a+b – четырёхзначное число. По условию 100a+b = k·ab, отсюда b = a(kb–100), то есть b делится на a.

Итак, b = ma, но a и b двузначные числа, поэтому m однозначное.

Так как 100a+b = 100a+ ma = а(100+m) и 100a+b = kab, то а(100+m) = kab,

то есть 100+m = kb или 100+m = kma, откуда 100 = m(ka–1).

Таким образом, m – делитель числа 100, кроме того, m – однозначное число, значит, m = 1, 2, 4, 5.

Так как ka = 1+100/m, причём а двузначно, то отпадают для m значения 1 и 5, ибо

при m = 1 число 100/1+1 = 101 не делится ни на какое двузначное число а;

при m = 5 число 100/5+1 = 21 и имеем а=21, при котором b = ma = 5·21 – трёхзначное число.

При m = 2 имеем, ka = 51, a = 17, b = 17·2 = 34;

при m = 4 имеем, ka = 26, a = 13, b = 13·4 = 52.

Ответ: 17 и 34, 13 и 52.

Воспользуемся тем, что сумма одинаковых нечётных степеней двух чисел делится на сумму этих чисел, что следует из известного алгебраического тождества. Можно записать:

2 2k+1 + n 2k+1 = (2 + n)·А1,

3 2k+1 + (n – 1) 2k+1 = (3 + (n – 1))·А2 = (2 + n)·А2,

4 2k+1 + (n – 2) 2k+1 = (4 + (n – 2))·А3 = (2 + n)·А3 и так далее, где Аi – некоторые целые числа.

В зависимости от чётности n возможна нехватка числа для образования последней пары, избежать этого позволит умножение на 2, рассматриваемой в условии суммы. Итак,

2(1 2k+1 + 2 2k+1 +. +n 2k+1 ) = 2·1 2k+1 + (2 2k+1 + n 2k+1 ) + (3 2k+1 + (n – 1) 2k+1 ) +. + (n 2k+1 + 2 2k+1 ) =

= 2 + (n + 2)·А, где А – некоторое целое число.

Одно из слагаемых последней суммы делится на n + 2, другое при любых натуральных n – нет. Итак, рассматриваемая в условии сумма не делится на n при любых натуральных n и k.

10. Докажите, что для любого простого числа р > 2 числитель m дроби

какой остаток при делении на 3 дает число вида 3k 2 где k z

Заметим, что число р–1 чётное, и преобразуем дробь m/n к виду

какой остаток при делении на 3 дает число вида 3k 2 где k z

Приводя полученное выражение к общему знаменателю

какой остаток при делении на 3 дает число вида 3k 2 где k z

какой остаток при делении на 3 дает число вида 3k 2 где k z

Задачи без решений

1. Докажите, что при любом натуральном n:

а) число 4 n + 15n – 1 делится на 9;

б) число 3 2n+3 + 40n – 27 делится на 64;

в) число 5 n (5 n + 1) – 6 n (3 n + 2 n ) делится на 91.

а) натуральные значения n такие, что n 5 – n делится на 120;

б) наименьшее натуральное число n такое, что n делится на 19, а n + 2 делится на 82.

3. Пусть m, n – различные натуральные числа, причём m – нечётное. Докажите, что 2 m –1 и 2 n +1 взаимно простые.

4. Четыре различных целых трёхзначных числа, начинающиеся с одной и той же цифры, обладают тем свойством, что их сумма делится на три из них без остатка. Найдите эти числа.

Источник

Деление чисел с остатком

какой остаток при делении на 3 дает число вида 3k 2 где k z

Деление с остатком целых положительных чисел

Деление — это разбиение целого на равные части.

Остаток от деления — это число, которое образуется при делении с остатком. То есть то, что «влезло» и осталось, как хвостик.

Чтобы научиться делить числа с остатком, нужно усвоить некоторые правила. Начнем!

Все целые положительные числа являются натуральными. Поэтому деление целых чисел выполняется по всем правилам деления с остатком натуральных чисел.

Попрактикуемся в решении.

Пример

Разделить 14671 на 54.

Выполним деление столбиком:

какой остаток при делении на 3 дает число вида 3k 2 где k z

Неполное частное равно 271, остаток — 37.

Ответ: 14671 : 54 = 271(остаток 37).

Деление с остатком положительного числа на целое отрицательное

Чтобы легко выполнить деление с остатком положительного числа на целое отрицательное, обратимся к правилу:

В результате деления целого положительного a на целое отрицательное b получаем число, которое противоположно результату от деления модулей чисел a на b. Тогда остаток равен остатку при делении |a| на |b|.

Неполное частное — это результат деления с остатком. Обычно в ответе записывают целое число и рядом остаток в скобках.

Это правило можно описать проще: делим два числа со знаком «плюс», а после подставляем «минус».

Все это значит, что «хвостик», который у нас остается, когда делим положительное число на отрицательное — всегда положительное число.

Алгоритм деления положительного числа на целое отрицательное (с остатком):

Пример

Разделить 17 на −5 с остатком.

Применим алгоритм деления с остатком целого положительного числа на целое отрицательное.

Разделим 17 на − 5 по модулю. Отсюда получим, что неполное частное равно 3, а остаток равен 2. Получим, что искомое число от деления 17 на − 5 = − 3 с остатком 2.

Ответ: 17 : (− 5) = −3 (остаток 2).

Деление с остатком целого отрицательного числа на целое положительное

Чтобы быстро разделить с остатком целое отрицательное число на целое положительное, тоже придумали правило:

Чтобы получить неполное частное с при делении целого отрицательного a на положительное b, нужно применить противоположное данному числу и вычесть из него 1. Тогда остаток d будет вычисляться по формуле:

d = a − b * c

Из правила делаем вывод, что при делении получается целое неотрицательное число.

Для точности решения применим алгоритм деления а на b с остатком:

Рассмотрим пример, где можно применить алгоритм.

Пример

Найти неполное частное и остаток от деления −17 на 5.

Разделим заданные числа по модулю.

Получаем, что при делении частное равно 3, а остаток 2.

Так как получили 3, противоположное ему −3.

Необходимо отнять единицу: −3 − 1 = −4.

Чтобы вычислить остаток, необходимо a = −17, b = 5, c = −4, тогда:

d = a − b * c = −17 − 5 * (−4) = −17 − (− 20) = −17 + 20 = 3.

Значит, неполным частным от деления является число −4 с остатком 3.

Ответ: (−17) : 5 = −4 (остаток 3).

Деление с остатком целых отрицательных чисел

Сформулируем правило деления с остатком целых отрицательных чисел:

Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b, нужно произвести вычисления по модулю, после чего прибавить 1. Тогда можно произвести вычисления по формуле:

d = a − b * c

Из правила следует, что неполное частное от деления целых отрицательных чисел — положительное число.

Алгоритм деления с остатком целых отрицательных чисел:

Пример

Найти неполное частное и остаток при делении −17 на −5.

Применим алгоритм для деления с остатком.

Разделим числа по модулю. Получим, что неполное частное равно 3, а остаток равен 2.

Сложим неполное частное и 1: 3 + 1 = 4. Из этого следует, что неполное частное от деления заданных чисел равно 4.

Для вычисления остатка применим формулу. По условию a = −17, b = −5, c = 4, тогда получим d = a − b * c = −17 − (−5) * 4 = −17 − (−20) = −17 + 20 = 3.

Получилось, что остаток равен 3, а неполное частное равно 4.

Ответ: (−17) : (−5) = 4 (остаток 3).

Деление с остатком с помощью числового луча

Деление с остатком можно выполнить и на числовом луче.

Пример 1

Рассмотрим выражение: 10 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления помещаются полностью три раза и одно деление осталось.

какой остаток при делении на 3 дает число вида 3k 2 где k z

Решение: 10 : 3 = 3 (остаток 1).

Пример 2

Рассмотрим выражение: 11 : 3.

Отметим на числовом луче отрезки по 3 деления. Видим, что три деления поместились три раза и два деления осталось.

какой остаток при делении на 3 дает число вида 3k 2 где k z

Решение: 11 : 3 = 3 (остаток 2).

Проверка деления с остатком

Пока решаешь пример, бывает всякое: то в окно отвлекся, то друг позвонил. Чтобы убедиться в том, что все правильно, важно себя проверять. Особенно ученикам 5 класса, которые только начали проходить эту тему.

Формула деления с остатком

a = b * c + d,

где a — делимое, b — делитель, c — неполное частное, d — остаток.

Эту формулу можно использовать для проверки деления с остатком.

Пример

Рассмотрим выражение: 15 : 2 = 7 (остаток 1).

В этом выражении: 15 — это делимое, 2 — делитель, 7 — неполное частное, а 1 — остаток.

Чтобы убедиться в правильности ответа, нужно неполное частное умножить на делитель (или наоборот) и к полученному произведению прибавить остаток. Если в результате получится число, которое равно делимому, то деление с остатком выполнено верно. Вот так:

Теорема о делимости целых чисел с остатком

Если нам известно, что а — это делимое, тогда b — это делитель, с — неполное частное, d — остаток. И они между собой связаны. Эту связь можно описать через теорему о делимости с остатком и показать при помощи равенства.

Теорема

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом:

где q и r — это некоторые целые числа. При этом 0 ≤ r ≤ b.

Доказательство:

Если существуют два числа a и b, причем a делится на b без остатка, тогда из определения следует, что есть число q, и будет верно равенство a = b * q. Тогда равенство можно считать верным: a = b * q + r при r = 0.

Тогда необходимо взять q такое, чтобы данное неравенством b * q

Источник

Какой остаток при делении на 3 дает число вида 3k 2 где k z

Найдите трехзначное натуральное число, большее 600, которое при делении на 4, на 5 и на 6 дает в остатке 3, и цифры которого расположены в порядке убывания слева направо. В ответе укажите какое-нибудь одно такое число.

При делении на 4 число даёт в остатке 3, следовательно, оно нечётное. Поскольку число при делении на 5 даёт в остатке 3, то оно может оканчиваться на 3 или на 8. Таким образом, число обязательно должно заканчиваться цифрой 3. Подбором находим, что условию задачи удовлетворяют числа 963, 843.

Приведем другое решение.

Число имеет одинаковый остаток при делении на 4, 5 и 6, а значит, будет иметь тот же остаток при делении на наименьшее общее кратное этих чисел — число 60. Таким образом, число имеет вид какой остаток при делении на 3 дает число вида 3k 2 где k zгде какой остаток при делении на 3 дает число вида 3k 2 где k zПеребирая k, получаем следующие трёхзначные числа: 603, 663, 723, 783, 843, 903, 963. Выберем из них те, цифры которых расположены в порядке убывания, получим 843, 963.

Комментарий.Можно было бы принять во внимание, что произведение чисел, дающих при делении на 4, 5 и 6 остаток 1, дает в остатке 1, и потому искать число в виде какой остаток при делении на 3 дает число вида 3k 2 где k zМы получили бы лишь четыре «подозрительных» числа: 603, 723, 843 и 963, по убыванию цифр подошли бы числа 843 и 963.

Источник

Какой остаток при делении на 3 дает число вида 3k 2 где k z

Найдите трехзначное натуральное число, большее 600, которое при делении на 4, на 5 и на 6 дает в остатке 3, и цифры которого расположены в порядке убывания слева направо. В ответе укажите какое-нибудь одно такое число.

При делении на 4 число даёт в остатке 3, следовательно, оно нечётное. Поскольку число при делении на 5 даёт в остатке 3, то оно может оканчиваться на 3 или на 8. Таким образом, число обязательно должно заканчиваться цифрой 3. Подбором находим, что условию задачи удовлетворяют числа 963, 843.

Приведем другое решение.

Число имеет одинаковый остаток при делении на 4, 5 и 6, а значит, будет иметь тот же остаток при делении на наименьшее общее кратное этих чисел — число 60. Таким образом, число имеет вид какой остаток при делении на 3 дает число вида 3k 2 где k zгде какой остаток при делении на 3 дает число вида 3k 2 где k zПеребирая k, получаем следующие трёхзначные числа: 603, 663, 723, 783, 843, 903, 963. Выберем из них те, цифры которых расположены в порядке убывания, получим 843, 963.

Комментарий.Можно было бы принять во внимание, что произведение чисел, дающих при делении на 4, 5 и 6 остаток 1, дает в остатке 1, и потому искать число в виде какой остаток при делении на 3 дает число вида 3k 2 где k zМы получили бы лишь четыре «подозрительных» числа: 603, 723, 843 и 963, по убыванию цифр подошли бы числа 843 и 963.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *