какой основной признак характерен для водорослей
Содержание:
Отдел Водоросли – древняя группа низших растений. Он насчитывает около 30 тысяч видов. Водоросли различны по происхождению и строению. Они обитают во многих средах обитания – на суше, в пресных и соленых водах, на поверхности и в толще почвы, на растения и т.д.
Общая характеристика
Водоросли могут быть одноклеточными, многоклеточными и колониальными организмами. Некоторые виды достигают 100-200 м в длину. Одноклеточным водорослям характерен симбиоз с грибами, в результате чего образуются особенные организмы – лишайники. Водоросли питаются автотрофно, т.е. образуют органические вещества при фотосинтезе.
Для водорослей, как для всех низших растений, характерно отсутствие дифференцированных клеток. Их тело представлено слоевищем, прикрепленным к субстрату с помощью ризоидов. У водорослей отсутствуют механические ткани, поэтому таллом плавает в воде. Также у них нет проводящих тканей, поэтому у каждой клетки есть доступ к окружающей среде.
Форма таллома может быть:
Для клеток характерна клеточная стенка из целлюлозы и гликопротеидов. В клетках присутствует зеленый пигмент хлорофилл, находящийся в хлоропластах. Хлоропласты водорослей называются хроматофорами. Хроматофор от хлоропластов отличается формой, меньшими размерами и иным строением хлорофилла. Но не всем представителям отдела свойственен зеленый цвет, поэтому у некоторых представителей отдела присутствуют маскирующие пигменты.
В клетках также присутствует система вакуолей. В подвижных организмах присутствуют сократительные вакуоли, с помощью которых поддерживается тургор и обеспечивается удаление лишней воды из клетки. Для подвижных водорослей также характерно наличие стигмы. Она обуславливает фототаксис – способность организма передвигаться к освещенным местам для фотосинтеза.
Жизненный цикл
Жизненный цикл водорослей включает две чередующихся фазы – гаплоидную и диплоидную. Гаплоидная стадия представлена гаметофитом, а диплоидная – спорофитом. Гаплоидная фаза включает гаметы: спермии, сперматозоиды, яйцеклетки.
При встрече двух гамет – спермия (n) и яйцеклетки (n) образуется зигота (2n) Из нее созревает спорофит (2n). Т.о. формируется диплоидный набор хромосом. На спорофите в зооспорангиях при мейозе вырабатываются зооспоры (n). Они образуют женские и мужские гаметофиты (n) митотическим делением. Из гаметофитов с помощью митоза развиваются спермии (n) и яйцеклетки (n), при сливании которых образуется зигота (2n). Цикл завершается.
Половые процессы
Для представителей отдела характерно несколько типов половых процессов:
Особый половый процесс водорослей – конъюгация. Она представляет собой сливание не гамет, а вегетативных клеток без жгутиков. Конъюгация – процесс соединения клеток с помощью выростов и формирования копуляционного канала, по которому содержимое одной клетки перемещается в другую. В результате развивается зигоспора, а затем образуется взрослый организм.
Часть 3. Царство Растения. Группа Водоросли (несколько отделов).
24. Рассмотрите изображенные на рисунке растения. Напишите, к каким систематическим группам они относятся.
25. Пользуясь текстом учебника, выпишите основные признаки, характерные для водорослей.
Автотрофы; могут быть одноклеточными, колониальными и многоклеточными; на теле многоклеточных водорослей отсутствуют вегетативные органы; тело представляет собой слоевище; отсутствуют корни; клеточная стенка состоит из целлюлозы и пектиновых веществ.
26. Как размножаются водоросли? Опишите половое размножение водорослей.
Размножаются водоросли как половым, так и бесполым способом.
Половое происходит по следующей последовательности: гаметы – оплодотворение – зигота – зооспоры – взрослая особь.
27. Какие водоросли изображены на рисунке? Напишите, где они обитают.
1. Саргассум. Распространены по берегам теплых морей планеты.
2. Ламинария. Обитает в южных частях Японского, Охотского, Белого и Карского морях.
3. Ламинария пальчатая. Живет в Северной Атлантике.
4. Фукус. Встречается на литорали и в сублиторали практически по всему миру.
28. Запишите определения.
Слоевище – это тело, не расчлененное на ткани и органы.
Ризоиды – это нитевидные образования, служащие для прикрепления водоросли к субстрату и поглощению минеральных веществ.
29. Каково значение водорослей в живой природе и в жизни человека?
• Как продуценты выводят органические вещества из неорганических;
• Выделяют кислород;
• Употребляются в пищу скотом и людьми;
• Применяются в изготовлении лекарств;
• Используются в пищевой промышленности;
• Выступают в качестве индикатора загрязнений.
30. Выполните лабораторную работу «Строение спирогиры».
1. Рассмотрите спирогиру. Опишите ее внешний вид и сделайте рисунок.
Неветвящаяся нитевидная водоросль зеленого цвета.
2. Рассмотрите микропрепарат «Строение спирогиры» при небольшом увеличении микроскопа (56 раз). Опишите её строение. Сделайте рисунок.
Нитчатая водоросль со спиралевидно расположенными пигментами хлорофилла.
3. Рассмотрите при большом увеличении микроскопа одну клетку спирогиры. Из каких частей она состоит? Зарисуйте клетку, подпишите названия её частей.
Какой основной признак характерен для водорослей
Водоросли являются наиболее древней группой растений. Они прошли длительный эволюционный путь, приспосабливаясь к различным сменявшимся условиям на Земле.
Водоросли относятся к низшим растениям, так как не имеют тканей и органов. Тело водорослей называется талломом, или слоевищем. У некоторых водорослей есть ризоиды — нитевидные выросты, в основном предназначенные для прикрепления к субстрату. Могут выполнять функцию всасывания воды и минеральных веществ.
Обитая в водной среде, они поглощают питательные вещества всей поверхностью. Вода поглощает и рассеивает свет, поэтому по мере погружения освещенность падает. Волны красной части спектра практически не проникают на глубину свыше 12 м. А именно в этой области спектра «работает» хлорофилл. Поэтому для лучшего обеспечения фотосинтеза у многих групп водорослей появились дополнительные пигменты, поглощающие свет в синей области спектра. Для каждого отдела водорослей характерен свой набор пигментов, что отражается в их названиях.
отдел зеленые водоросли
Зеленые водоросли не имеют дополнительных пигментов, поэтому их окраску определяет хлорофилл. Именно эта группа водорослей дала начало высшим растениям. Они широко распространены в пресных и морских водах, встречаются также на суше в увлажненных местах: в почве, на коре деревьев, на камнях. Размеры их варьируют от нескольких микрометров до метров. Они представлены различными жизненными формами: одноклеточными, колониальными, нитчатыми и многоклеточными. Представителями одноклеточных водорослей являются хламидомонада и хлорелла.
СТРОЕНИЕ ХЛАМИДОМОНАДЫ
Хламидомонада представляет собой округлую клетку, вытянутую с переднего конца (рис. 1). На этом конце находится пара жгутиков, за счет которых она довольно быстро передвигается. Снаружи клетка покрыта клеточной стенкой. В центре клетки находится гаплоидное ядро (содержит одинарный набор хромосом — n). Единственная крупная пластида, называемая хроматофор, имеет чашевидную форму и располагается по периферии клетки, делая всю ее окрашенной. В клетке имеется обычный набор эукариотических органелл. Кроме того, на переднем конце располагается пара сократительных вакуолей, выводящих из клетки избыток воды.
В условиях неравномерного освещения хламидомонада всегда плывет на свет. Это явление называется положительным фототаксисом. Для его осуществления у хламидомонады есть специальный органоид, видимый как маленькая красная точка в основании жгутиков. Он называется стигма, или глазок.
РАЗМНОЖЕНИЕ И ЖИЗНЕННЫЙ ЦИКЛ ХЛАМИДОМОНАДЫ
Жизненный цикл хламидомонады идет с чередованием гаплоидной и диплоидной форм (рис. 2). В благоприятных условиях хламидомонада быстро размножается бесполым путем. Достигнув определенных размеров, клетка отбрасывает жгуты и округляется. Происходит, в зависимости от вида, 1, 2 или 3 митотических деления ядра. Под оболочкой материнской клетки образуется 2, 4 или 8 мелких клеток, имеющих пару жгутиков. Оболочка материнской клетки разрывается, и мелкие клетки, называемые зооспорами, выходят в среду. Они растут и превращаются во взрослых хламидомонад.
Рис. 2. Жизненный цикл хламидомонады
В неблагоприятных условиях у хламидомонады начинается половой процесс. Внутри родительских клеток формируются подвижные гаметы, которые выходят в воду. Гаметы, происходящие из разных родительских клеток, соединяются попарно и образуют зиготу. Она покрывается плотной оболочкой и превращается в зигоцисту, способную переживать неблагоприятные условия. При наступлении благоприятных условий в зигоцисте происходит мейоз, и из нее выходят 4 зооспоры, вырастающие во взрослую хламидомонаду.
ХЛОРЕЛЛА
В отличие от хламидомонады, хлорелла не имеет жгутиков и удерживается в верхних слоях воды за счет низкой плотности. Выглядит она как зеленая муть в воде — вода «цветет» (рис. 3).
Размножается она только бесполым путем (рис. 4), а неблагоприятные условия переживает в форме цисты, в которые превращаются обычные клетки. Для хлореллы характерна высокая скорость фотосинтеза, она богата белками и липидами, благодаря чему ее выращивают на корм скоту и применяют для регенерации кислорода в космических аппаратах.
Представителями нитчатых зеленых водорослей являются улотрикс и спирогира.
УЛОТРИКС
Улотрикс растет в прикрепленном состоянии (рис. 5). Нижняя клетка нити, называемая прикрепительной (ризоидальной) клеткой, плотно врастает в поверхность какого-либо подводного предмета, образует толстую клеточную стенку, ее цитоплазма отмирает. Остальные клетки имеют одинаковое строение и способны к делению и фотосинтезу. За счет их деления водоросль растет в длину.
Улотрикс размножается половым и бесполым путем (рис. 6).
Бесполое размножение улотрикса осуществляется с помощью подвижных 4-жгутиковых зооспор. Они образуются путем митотического деления из клеток средней части нити. Прикрепившись к какой-нибудь поверхности, они сбрасывают жгуты и делятся митозом в плоскости, параллельной поверхности. Нижняя клетка превращается в прикрепительную, а верхняя продолжает делиться, образуя нить. Нити улотрикса могут размножаться фрагментацией.
В неблагоприятных условиях улотрикс размножается половым путем. В клетках нити формируются подвижные гаметы. Они, соединяясь попарно, образуют зиготу, которая превращается с зигоцисту, переживающую неблагоприятные условия. В благоприятных условиях в ней происходит мейоз, и образовавшиеся гаплоидные клетки дают начало новым нитям улотрикса.
СПИРОГИРА
Спирогира представляет собой длинные плавающие в толще воды нити, состоящие из крупных клеток (рис. 7). Центр клетки занимает крупная центральная вакуоль, цитоплазма находится в пристенном слое и пронизывает вакуоль отдельными тяжами. Особенность спирогиры: один или несколько лентовидных хроматофоров, закрученных в спираль, и гаплоидное ядро.
Нить растет за счет деления всех клеток.
При фрагментации нити каждый ее кусочек может дать начало новой нити. Так происходит вегетативное размножение спирогиры. Часто в водоемах спирогира образует густые сплетения, похожие на зеленую вату.
Половой процесс — конъюгация — у спирогиры происходит между обычными клетками двух разных нитей (рис. 8).
При сближении нитей между ними образуется конъюгационная трубка. Содержимое одной клетки, принадлежащей к «+»-нити, перетекает в другую, принадлежащую «–»-нити.
Происходит слияние клеток, а затем и ядер. Формируется диплоидная зигота, которая окружается плотной оболочкой — образуется зигоспора. Зигота делится мейозом, образуя 4 гаплоидные клетки.
В дальнейшем 3 из 4 клеток погибают. Оставшаяся прорастает в гаплоидную нить спирогиры.
СИФОНОВЫЕ ВОДОРОСЛИ
Одной из самых древних групп зеленых водорослей являются сифоновые водоросли. У них таллом образован, как правило, одной гигантской клеткой. В цитоплазме кроме одного или нескольких ядер содержится также один или несколько хлоропластов. Многочисленные хлоропласты обладают дисковидной или веретеновидной формой; когда хлоропласт один, он имеет сетчатое строение. Примерами таких водорослей являются каулерпа (рис. 9) и ацетабулярия (рис. 10).
АЦЕТАБУЛЯРИЯ
Нижняя часть одноклеточного слоевища (ризоид) находится в грунте. В ризоиде расположено ядро. Вверх растет ножка, достигающая в длину нескольких сантиметров. На ее конце формируется шляпка. Для размножения по периферии шляпки образуются споры, из которых вырастают новые растения.
отдел Бурые водоросли
С помощью дополнительных пигментов они могут осуществлять фотосинтез на глубине до 30 метров. Они встречаются только в морях и представляют собой крупные растения (до 30 метров в длину), состоящие из диплоидных клеток. Таллом образует ризоиды для прикрепления к субстрату (рис. 11). Многие из них растут в приливно-отливной зоне ( литорале) и во время отлива оказываются на суше. Для защиты от высыхания бурые водоросли образуют много слизистых веществ. Представителями бурых водорослей является фукус (рис. 12) и ламинария (рис. 13). Таллом фукуса содержит многочисленные пузырьки воздуха для увеличения плавучести.
Рис. 11 Рис. 12 Рис. 13
В жизненном цикле бурых водорослей наблюдается чередования гаплоидного гаметофита и диплоидного спорофита с преобладанием спорофита.
Размножаются бурые водоросли половым и бесполым путем. Диплоидные растения посредством мейоза образуют гаплоидные клетки. У одних (род фукус) они становятся гаметами, при слиянии которых образуется зигота, дающая начало новому растению. У большинства же продуктами мейоза являются споры, которые дают начало гаплоидной стадии (рис. 14).
Рис. 14. Жизненный цикл ламинарии
Гаплоидная стадия представляет собой мелкие нитевидные образования, которые недолго живут на дне моря. Они раздельнополы. На них формируются многоклеточные (!) половые органы, в которых образуются гаметы: яйцеклетки и сперматозоиды. Они, сливаясь, образуют зиготу, из которой вырастают крупные диплоидные растения.
Отдел красные водоросли (багрянки)
На глубинах более 30 метров света не хватает и для бурых водорослей. Там обитают красные водоросли, пигменты которых способны использовать синий свет. Основные пигменты: хлорофилл, каротиноиды (желто-оранжевые), фикобилины (красно-синие). Встречаются они и на более мелких участках дна, вплоть до границы воды и суши. В основном это морские растения средних размеров (десятки сантиметров в длину), но среди них есть и обитатели пресных вод, и одноклеточные представители. Представители: порфира (рис. 15) и филлофора (рис. 16).
В пресных водоемах (ручьях и болотах) распространен батрахоспермум ( «жабья икра») в виде разветвленных сине-зеленых кустиков, окутанных бесцветной студенистой слизью, придающей ему отдаленное сходство с икрой лягушек или жаб (рис. 17).
У красных водорослей в жизненном цикле одинаково представлены гаплоидная и диплоидная стадии, часто они образуют единый таллом. Полностью отсутствуют жгутиковые стадии жизненного цикла.
Многие виды красных водорослей употребляются в пищу, используются для получения агар-агара и медицинских препаратов.
Строение водорослей
Современная биология не считает дифференциацию тканей определяющим различием, сейчас существенным считают фундаментальные различия в строение клеток, обмене веществ. Тем не менее, во многих устаревших пособиях этот термин используется, и я обязан предупредить вас о нем.
Наука о водорослях называется альгология (от лат. alga — морская трава, водоросль и греч. λόγος — учение).
Среди водорослей есть одноклеточные и многоклеточные, некоторые водоросли достигают в длину 100-200 метров. Способ питания водорослей автотрофный: они синтезируют органические вещества в процессе фотосинтеза. Солнечный свет, проходя через толщу воды, рассеивается, что делает фотосинтез с увеличением глубины все труднее и труднее. Поэтому кроме хлорофилла они часто имеют и другие пигменты.
Жизненный цикл водорослей
Жизненные циклы водорослей разнообразны, обусловлены рядом экологических факторов. Мы разберем жизненный цикл на примере зеленой водоросли ульвы (морского салата).
Для начала отметим, что в целом жизненный цикл водорослей представляет собой чередование двух фаз: гаплоидной (гаметофита) и диплоидной (спорофита). Гаплоидной фазой называется фаза, при которой клеточные ядра содержат непарный (половинный) набор хромосом. К гаплоидной фазе всегда принадлежат гаметы: сперматозоиды, спермии (отличающиеся от сперматозоидов отсутствием жгутика), яйцеклетки.
При слиянии двух гамет: яйцеклетки (n) и спермия (n) образуется зигота (2n) из которой развивается спорофит (2n), таким образом, в спорофите восстанавливается диплоидный набор хромосом. В зооспорангии на спорофите в результате мейоза образуются зооспоры (n), которые делятся митозом, порастают и образуют мужские и женские гаметофиты (n). Клетки гаметофитов делятся митозом, образуются гаметы (n), которые сливаются в зиготу (2n), цикл замыкается.
Типы половых процессов
Значение водорослей
В Мировом океане водоросли составляют основную часть биомассы. Именно они являются главными продуцентами (производителями) органического вещества, преобразуя в ходе фотосинтеза энергию солнечного света в энергию химических связей. Значение водорослей для человека трудно переоценить: содержащиеся в них вещества необходимы для нормального роста и развития животных и человека (к примеру, морская капуста (ламинария) отличается большим содержанием йода.)
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
База знаний
2.6.3. Водоросли
Водоросли образуют огромную группу протоктистов, имеющих большое биологическое значение и очень важных для человека. У них нет ни одного диагностического признака. Вероятнее всего, что это фотосинтезирующие эукариоты, которые эволюционировали в водной среде и в ней остались. Некоторые водоросли вышли из воды и успешно приспособились к жизни на суше, но в отличие от растений доля наземных водорослей ничтожна по сравнению с океаническими и пресноводными формами. Тело водорослей не разделяется на стебель, корни и листья. Такое относительно недифференцированное тело называют талломом.
Водоросли образуют ряд четко выраженных естественных групп, различающихся главным образом своими фотосинтетическими пигментами. В современной классификации эти группы получили статус отделов. На рис. 2.28 приводятся только четыре отдела водорослей. Характерные особенности водорослей в целом, а также двух из основных отделов описаны в табл. 2.7. Два представителя водорослей, а именно Chlorella (отдел Chlorophyta) и Fucus (отдел Phaeophyta) рассматриваются ниже более подробно.
Таблица 2.7. Систематика и основные признаки двух из главных групп водорослей
Водоросли | |
Общие признаки Почти все виды приспособлены к существованию в водной среде Большое разнообразие размеров и форм, включая одноклеточные, нитчатые, колониальные и талломовидные формы. Таллом представляет собой тело водоросли, которое не дифференцировано на истинные корни, стебли и листья и лишено истинной проводящей системы (ксилемы и флоэмы) Часто водоросли имеют плоскую форму Фотосинтезирующие, эукариотические организмы | |
Отдел Chlorophyta (зеленые водоросли) | Отдел Phaeophyta (бурые водоросли) |
Главный фотосинтетический пигмент – хлорофилл, поэтому они имеют зеленый цвет. Содержат хлорофиллы а и b (как у растений) Запасают углеводы в виде нерастворимого крахмала В основном пресноводные виды Большое разнообразие типов, например одноклеточные, нитчатые, колониальные, талломовидные ПРИМЕРЫ: | * Основной фотосинтетический пигмент имеет коричневый цвет и называется фукоксантином. Содержат хлорофиллы a и c * Запасают углеводы в виде растворимого ламинарина и маннитола. Запасают также жиры Почти все виды морские (всего три пресноводных рода) Нитчатые или талломовидные, часто крупные ПРИМЕРЫ: |
2.6.4. Отдел Chlorophyta (зеленые водоросли)
Хлорелла – одноклеточная, неподвижная зеленая водоросль. Ее строение показано на рис. 2.30. Ее можно встретить в пресноводных прудах и канавах. Хлореллу легко культивировать и она широко используется в экспериментах по изучению фотосинтеза (разд. 7.6), а также в качестве альтернативного источника питания (белок одноклеточных; разд. 12.12.3).
Рис. 2.30. Строение зеленой водоросли хлореллы.
2.6.5. Отдел Phaeophyta (бурые водоросли)
Фукус – относительно крупная бурая водоросль с довольно сложным строением. Ее тело представляет собой таллом, дифференцированный на черешок, базальный диск и слоевище (следует иметь в виду, что это не настоящие стебель, корни и листья). Эта морская водоросль часто встречается у скалистых берегов Британского побережья. Она хорошо адаптирована к суровым условиям побережья, где из-за приливов и отливов попеременно то обнажается, то вновь покрывается водой.
Известны три наиболее распространенных вида фукуса, которые часто встречаются в трех разных зонах, или глубинах, побережья – явление, называемое зональным распределением (разд. 10.6.4). Распределение водорослей по зонам связано главным образом с их способностью выдерживать пребывание на воздухе. Ниже перечислены основные признаки, по которым их можно узнать, а также места их распространения на побережье.
F. spiralis (плоская водоросль) – их выбрасывает на берег у самой высокой отметки прилива. В погруженном состоянии таллом слегка закручен в спираль.
F. serratus (обыкновенная зубчатая или пильчатая водоросль) – в средней приливной зоне. Края таллома зазубрены.
F. vesiculosus (пузырчатая водоросль) – у самой низкой отметки отлива. Имеются воздушные пузыри, обусловливающие плавучесть водоросли. Внешние признаки F. Vesiculosus показаны на рис. 2.31.
Рис. 2.31. Внешнее строение Fucus vesiculosus; отмечены характерные признаки, в частности адаптации к окружающей среде.
АДАПТАЦИИ К ОКРУЖАЮЩЕЙ СРЕДЕ. Прежде чем мы рассмотрим адаптации фукуса к среде обитания, следует сказать несколько слов о природе самой среды, которая достаточно негостеприимна. Будучи растениями приливно-отливной зоны, водоросли разных видов в разной степени подвергаются воздействию воздушной среды во время отлива. Поэтому они должны быть защищены от высыхания. Кроме того, и температура может резко меняться, когда холодные морские волны вливаются в прогретые лужицы, оставшиеся после отлива. Растения должны быть адаптированы и еще к одному фактору, а именно к резким изменениям солености воды, будь то ее увеличение при испарении из небольших водоемов, образовавшихся после отлива, или ее уменьшение во время дождя. Для того чтобы противостоять таким факторам, как приливы, отливы, прибой и удары волн, нужна определенная механическая прочность. Большие волны способны перекатывать камни, которые могут придавливать водоросли, нанося им большие повреждения.
МОРФОЛОГИЧЕСКИЕ АДАПТАЦИИ (ОБЩЕЕ СТРОЕНИЕ). Таллом водоросли прочно прикрепляется к грунту с помощью базального диска (рис. 2.31). Связь с субстратом, обычно это камни, оказывается настолько прочной, что водоросль бывает чрезвычайно трудно оторвать от него. На деле первым, как правило, не выдерживает камень, а не базальный диск.
Таллом дихотомически ветвится (т.е. образует по две ветви в каждой точке ветвления). Это сводит к минимуму сопротивление потоку воды, устремляющейся между ветвями. К тому же таллом прочный и упругий, но не жесткий, а ребра слоевища прочные и гибкие.
У F. Vesiculosus имеются воздушные пузыри, обеспечивающие его плавучесть; это удерживает слоевище вблизи поверхности воды, т.е. в условиях, способствующих максимальному улавливанию света для фотосинтеза.
Хлоропласты расположены в поверхностных слоях водоросли, обусловливая максимальное воздействие необходимого для фотосинтеза света.
ФИЗИОЛОГИЧЕСКИЕ АДАПТАЦИИ. Среди фотосинтетических пигментов преобладает бурый пигмент фукоксантин. В этом проявляется адаптация к фотосинтезу под водой, поскольку фукоксантин сильно поглощает свет в синей области видимого спектра, проникающий в толщу воды гораздо дальше, чем свет с большей длиной волны, например красный.
Таллом секретирует в больших количествах слизь, заполняющую все внутренние полости водоросли и выделяющуюся на поверхность. Слизь помогает удерживать воду, препятствуя таким образом обезвоживанию во время отлива.
Осмотический потенциал клеток водоросли выше (менее отрицательный), чем осмотический потенциал морской воды, и поэтому потерь воды за счет осмоса здесь не происходит.
ПРИСПОСОБЛЕНИЯ К ПОЛОВОМУ РАЗМНОЖЕНИЮ. Высвобождение гамет у фукуса синхронизировано с приливами. Во время отлива таллом обсыхает и выдавливает наружу репродуктивные органы, защищенные от высыхания слизью. Во время прилива стенки репродуктивных органов растворяются, высвобождая гаметы.
Мужские гаметы подвижны и обладают положительным хемотаксисом, обусловливающим их перемещение в сторону химического секрета, выделяемого женскими гаметами.
Развитие зиготы происходит сразу после оплодотворения, что сводит к минимуму риск быть смытым в океан.