какой основной недостаток сети fddi по сравнению с другими стандартными сетями
Достоинства и недостатки FDDI. Топологии FDDI. Принцип работы FDDI. Передача маркера в FDDI.
Технология FDDI (Fiber Distributed Data Interface — оптоволоконный интерфейс распределенных данных) — это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Работы по созданию технологий и устройств для использования волоконно-оптических каналов в локальных сетях начались в 80-с годы, вскоре после начала промышленной эксплуатации подобных каналов в территориальных сетях. Проблемная группа ХЗТ9.5 института ANSI разработала в период с 1986 по 1988 год начальные версии стандарта FDDI, который обеспечивает передачу кадров со скоростью 100 Мбит/с по двойному волоконно-оптическому кольцу длиной до 100 км.
Достоинства.
— Двойная кольцевая конфигурация обеспечивает избыточность.
— Система способна справляться с единичными и множественными обрывами, сегментируя участки.
— Двойное подключение (Dual Homing): учитывает избыточное соединение с FDDI сетью в топологии дерева. DAS станция может иметь двойное подключение, для этого А и B порты подключают к различным концентраторам. Если возникают сбои главного порта, активизируется резервная связь.
— Оптический обход: эта возможность гарантирует, прохождение светового сигнала при сбоях в питании DAS станции. Данные просто обходят неактивную станцию, проходя через оптический обход.
— Глобальное хранение: если оба логических кольца рабочие и в системе обнаружевается неисправность в одном из логических колец, то текущие данные без потери направляются по резервному кольцу.
— Каждый узел имеет объект управления, предоставляя большое число служб.
— Благодаря наличию обширной MIB имеется возможность SNMP управления.
Недостатки.
Высокая цена обусловлена дорогими трансиверами, преобразующими электрический сигнал в оптический и наоборот. Оптоволоконная технология:
Топология.
· Двойное кольцо без деревьев
· Двойное кольцо с деревьями
Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Приоритетные цели разработчиков:
— повысить битовую скорость передачи данных до 100 Мбит/с;
— повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода — повреждения кабели, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;
— максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.
Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети.
Наличие двух колец — это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru, то есть «сквозным», или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.
В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание», или «сворачивание», колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении а по вторичному — в обратном. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.
Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов.
Дата добавления: 2016-11-02 ; просмотров: 1942 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Какой основной недостаток сети fddi по сравнению с другими стандартными сетями
В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.
Рис. 2.1. Реконфигурация колец FDDI при отказе
Рис. 2.2. Обработка кадров станциями кольца FDDI
Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рисунке (рисунок 2.2, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.
Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (например, IP), а затем передает исходный кадр по сети последующей станции (рисунок 2.2, г). В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.
После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее (рисунок 2.2, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уровней.
Рис. 2.3. Структура протоколов технологии FDDI
Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Management).
Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом MLT-3. Спецификации уровней PMD и TP-PMD уже были рассмотрены в разделах, посвященных технологии Fast Ethernet.
Особенности сетей FDDI
Выбор оптоволокна в качестве среды передачи сразу же определил преимущества новой сети: высокую помехозащищенность, секретность передачи информации и прекрасную гальваническую развязку абонентов. Высокая скорость передачи, которую при использовании оптоволоконного кабеля достичь гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить гораздо большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок). И хотя к настоящему времени аппаратура FDDI не получила еще широкого распространения, ее перспективы очень неплохие.
Основные технические характеристики сети FDDI следующие.
· Метод доступа — маркерный.
Следовательно, FDDI имеет большие преимущества по сравнению со всеми рассмотренными ранее сетями. Даже сеть Fast Ethernet, имеющая такую же пропускную способность 100 Мбит/с, не может сравниться с FDDI по допустимым размерам сети и допустимому количеству абонентов. К тому же маркерный метод доступа FDD1 обеспечивает в отличие от CSMA/CD гарантированное время доступа и отсутствие конфликтов при любом уровне нагрузки.
Ограничение на общую длину сети в 20 км связано не с затуханием сигналов, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А максимальное расстояние между абонентами (2 км) определяется как раз затуханием сигналов в кабеле.
Для передачи данных в FDDI применяется код 4В/5В, специально разработанный для этого стандарта и обеспечивающий скорость 100 Мбит/с при пропускной способности кабеля 125 миллионов сигналов в секунду (или 125 МБод), а не 200 МБод, как при применении кода Манчестер-II. При этом каждым четырем битам передаваемой информации (каждому полубайту или нибблу) ставится в соответствие пять бит для восстановления синхронизации на приемном конце.
Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо сетевых адаптеров двух типов.
· Адаптеры класса А подключаются к внутреннему и внешнему кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или же возможность резервирования кабеля сети (при повреждении основного кабеля используется резервный кабель). Аппаратура этого класса используется в самых критичных частях сети.
· Адаптеры класса В подключаются только к внешнему кольцу сети. Они могут быть более простыми и дешевыми, чем адаптеры класса А, но не будут иметь их возможностей.
Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети могут использоваться связные концентраторы (wiring concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля за работой сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары) концентратор выполняет преобразование электрических сигналов в оптические и наоборот. Пример конфигурации сети FDDI представлен на рис. 2.11
Рис. 2.11. Пример конфигурации сети FDDI
Стандарт FDDI предусматривает возможность реконфигурации сети с целью сохранения ее работоспособности в случае повреждения кабеля (рис.2.12). Поврежденный участок кабеля исключается из кольца, но целостность сети при этом не нарушается вследствие перехода на одно кольцо вместо двух (т. е. адаптеры класса А начинают работать как адаптеры класса В).
В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется множественная передача маркера. Если при использовании Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета. Последовательность действий здесь следующая.
· Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом.
· Когда маркер пришел, абонент удаляет его из сети и передает свой пакет.
· Сразу после передачи пакета абонент посылает новый маркер.
Одновременно каждый абонент ведет свой отсчет времени, сравнивая реальное время обращения маркера (TRT) с заранее установленным контрольным временем его прибытия (РТТ). Если маркер возвращается раньше, чем установлено РТТ, то сеть загружена мало, и следовательно, абонент может спокойно передавать всю свою информацию. Если же маркер возвращается позже, чем установлено РТТ, то сеть загружена сильно, и абонент может передавать только самую необходимую информацию. При этом величины контрольного времени РТТ могут устанавливаться различными для разных абонентов. Такой механизм позволяет абонентам гибко реагировать на загрузку сети и поддерживать ее на оптимальном уровне.
Рис.2.12. Реконфигурация сети FDDI при повреждении кабеля
Стандарт FDDI в отличие от стандарта IEEE 802.5 не предусматривает возможности установки приоритетов пакетов и резервирования. Вместо этого все абоненты разделяются на две группы: асинхронные и синхронные. Для асинхронных абонентов время доступа к сети не слишком критично. Для синхронных оно должно быть жестко ограничено. В стандарте предусмотрен специальный алгоритм, обслуживающий эти два типа абонентов.
Несмотря на очевидные преимущества, сеть FDDI не получила пока широкого распространения, это связано главным образом с высокой стоимостью ее аппаратуры (порядка 3-5 тысяч долларов). Однако в ближайшее время ситуация может измениться.
Достоинства и недостатки FDDI. Топологии FDDI. Принцип работы FDDI. Передача маркера в FDDI
Технология FDDI (Fiber Distributed Data Interface — оптоволоконный интерфейс распределенных данных) — это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Работы по созданию технологий и устройств для использования волоконно-оптических каналов в локальных сетях начались в 80-с годы, вскоре после начала промышленной эксплуатации подобных каналов в территориальных сетях. Проблемная группа ХЗТ9.5 института ANSI разработала в период с 1986 по 1988 год начальные версии стандарта FDDI, который обеспечивает передачу кадров со скоростью 100 Мбит/с по двойному волоконно-оптическому кольцу длиной до 100 км.
Достоинства.
— Двойная кольцевая конфигурация обеспечивает избыточность.
— Система способна справляться с единичными и множественными обрывами, сегментируя участки.
— Двойное подключение (Dual Homing): учитывает избыточное соединение с FDDI сетью в топологии дерева. DAS станция может иметь двойное подключение, для этого А и B порты подключают к различным концентраторам. Если возникают сбои главного порта, активизируется резервная связь.
— Оптический обход: эта возможность гарантирует, прохождение светового сигнала при сбоях в питании DAS станции. Данные просто обходят неактивную станцию, проходя через оптический обход.
— Глобальное хранение: если оба логических кольца рабочие и в системе обнаружевается неисправность в одном из логических колец, то текущие данные без потери направляются по резервному кольцу.
— Каждый узел имеет объект управления, предоставляя большое число служб.
— Благодаря наличию обширной MIB имеется возможность SNMP управления.
Недостатки.
Высокая цена обусловлена дорогими трансиверами, преобразующими электрический сигнал в оптический и наоборот. Оптоволоконная технология:
Сети FDDI
FDDI (Fiber Distributed Data Interface) — это стандарт, или, вернее, набор сетевых стандартов, ориентированных, прежде всего, на передачу данных по волоконно-оптическом белю со скоростью 100 Мбит/с. Подавляющая часть спецификаций стандарта FDDI была разработана проблемной группой ХЗТ9.5 (ANSI) во второй половине 80-х годов. FDDI стала вой ЛВС, использующей в качестве среды передачи оптическое волокно.
В настоящее время большинство сетевых технологий поддерживают волоконно-оптический интерфейс в качестве одного из вариантов физического уровня, но FDDI оста наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, а оборудование различных производителей показывает хорошую степень совместимости.
При разработке технологии FDDI ставились в качестве наиболее приоритетных следующие цели:
— Повышение битовой скорости передачи данных до 100 Мбит/с;
— Повышение отказоустойчивости сети за счет стандартных процедур восстановления после отказов различного рода — повреждения кабеля, некорректной работы сетевого узла, возникновения высокого уровня помех на линии и т. п.;
— Максимально эффективное использование потенциальной пропускной способности с как для асинхронного, так и для синхронного графиков.
Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. У протокола FDDI есть и существенные отличия от Token Ring. Эти отличия связаны с требованиями, которые необходимы для поддержки большой скорости передачи информации, больших расстояний и возможности наряду с асинхронной передачи данных вести синхронную передачу. Два основных отличия в протоколах управления маркером у FDDI и IEEE 802.5 Token Ring следующие:
— в Token Ring станция, передающая кадры, удерживает маркер до тех пор, пока не получит все отправленные пакеты. В FDDI же станция выпускает маркер непосредственно окончанием передачи кадра (кадров);
— FDDI не использует приоритет и поля резервирования, которые Token Ring использует для выделения системных ресурсов.
В табл. 6.1. указаны основные характеристики сети FDDI.
Таблица 6.1. Основные характеристики сети FDDI
20 км* (одномодовое волокно)
100 м (неэкранированная витая пара UTP Cat.5)
100 м (экранированная витая пара IBM Туре 1)
* Некоторые производители выпускают оборудование на расстояние передачи до 50 км.
** При указанной длине сеть будет продолжать корректно работать и сохранять целостность при появлении единичного разрыва кольца или при отключении одной из станций кольца (режим WRAP) — при этом длина пути обхода маркера не будет превышать 200 км.
Принцип действия
Классический вариант сети FDDI строится на основе двух волоконно-оптических колец (двойного кольца), световой сигнал по которым распространяется в противоположных направлениях, рис, 6.1 а. Каждый узел подключаются на прием и передачу к обоим кольцам. Именно такая кольцевая физическая топология реализует основной способ повышения отказоустойчивости сети. В нормальном режиме работы данные идут от станции к станции только по одному из колец, которое называется первичным (primary). Для определенности направление движения данных в первичном кольце задано против часовой стрелки. Маршрут передачи данных отражает логическую топологию сети FDDI, которая всегда есть кольцо. Все станции, кроме передающей и принимающей, осуществляют ретрансляцию данных и являются сквозными. Вторичное кольцо (secondary) является резервным и в нормальном режиме работы сети для передачи данных не используется, хотя по нему и осуществляется непрерывный контроль за целостностью кольца.
Рис. 6.1. Двойное кольцо FDDI: а) нормальный режим работы; б) режим свернутого кольца (WRAP)
В случае возникновения какого-либо отказа в сети, когда часть первичного кольца не в состоянии передавать данные (например, обрыв кабеля, выход из строя или отключение одного из узлов), для передачи данных активизируется вторичное кольцо, которое дополняет первичное, образуя вновь единое логическое кольцо передачи данных, рис. 6.1 б. Этот режим работы сети называется WRAP, то есть «свертывание» кольца, Операция свертывания производится двумя сетевыми устройствами, находящимися по обе стороны от источника неисправности (поврежденного кабеля, или вышедшей из строя станции/концентратора). Именно через эти устройства происходит объединение первичного и вторичного колец. Таким образом, сеть FDDI может полностью восстанавливать свою работоспособность и целостность в случае единичных отказов ее элементов. При устранении неисправности сеть автоматически переходит в нормальный режим работы с передачей данных только по первичному кольцу.
В стандарте FDDI отводится большое внимание различным процедурам, которые благодаря распределенному механизму управления позволяют определить наличие неисправности 5 сети, и затем произвести необходимую реконфигурацию. При множественных отказах сеть распадается на несколько не связанных сетей — происходит микросегментация сети.
Работа сети FDDI основана на детерминированном маркерном доступе к логическому кольцу. Сначала происходит инициализация кольца, в процессе которой в кольцо одной из станций испускается специальный укороченный пакет служебных данных — маркер (token). После того, как маркер стал циркулировать по кольцу, станции могут обмениваться информацией.
До тех пор, пока нет передачи данных от станции к станции, циркулирует один лишь маркер, рис. 6.2 а, при получении которого станция обретает возможность передавать информацию. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации. В классическом варианте это определяется по первичному кольцу. Передача информации организуется в виде пакетов данных длинной до 4500 байт, называемых кадрами. Если в момент получения маркера у станции нет данных для передачи, то получив маркер, она немедленно транслирует его дальше по кольцу. При желании передавать станция, получив маркер, может удерживать его и вести соответственно передачу кадров в течение времени, называемого временем удержания маркера ТНТ (token holding time) (рис. 6.2 б). После истечения времени ТНТ станция обязана завершить передачу своего очередного кадра и передать (отпустить) маркер последующей станции, рис. 6.2 в. В любой момент времени передавать информацию может только одна станция, а именно та, которая захватила маркер.
Рис. 6.2. Передача данных
Каждая станция сети читает адресные поля получаемых кадров. В том случае, когда собственный адрес станции — MAC адрес — отличен от поля адреса получателя, станция просто ретранслирует кадр дальше по кольцу, рис. 6.2 г. Если же собственный адрес станции совпадает с полем адреса получателя в принимаемом кадре, станция копирует в свой внутренний буфер данный кадр, проверяет его корректность (по контрольной сумме), передает его поле данных для последующей обработки протоколу вышестоящего уровня (например, IP), а затем передает исходный кадр по сети последующей станции (рис. 6.2 д), предварительно проставив три признака в специальных полях кадра: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.
Далее кадры, транслируясь от узла к узлу, возвращаются к исходной станции, которая была их источником. Станция-источник для каждого кадра проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден, и если все нормально, ликвидирует это кадр (рис. 6.2 е), освобождая ресурсы сети, или, в противном случае, пытается осуществить повторную передачу. В любом случае функция удаления кадра возлагается на станцию, которая была его источником.
Маркерный доступ — это одно из наиболее эффективных решений. Благодаря этому реальная производительность кольца FDDI при большой загруженности достигает 95%. Для примера, производительность сети Ethernet (в рамках коллизионного домена) с ростом загруженности достигает 30% от пропускной способности.
Форматы маркера и кадра FDDI, процедура инициализации кольца, а также вопросы распределения ресурсов сети в нормальном режиме передачи данных рассмотрены в п. 6.7.
Составляющие стандарта FDDI
Составляющие уровни стандарта FDDI и основные функции, выполняемые этими уровнями, приведены на рис. 6.3.
Как и многие другие технологии локальных сетей, технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2, и ISO 8802.2, FDDI использует первый тип процедур LLC, при котором узлы работают в дейта-граммном режиме — без установления соединений и без восстановления потерянных или поврежденных кадров.
Рис. 6.3. Составляющие стандарта FDDI
Первоначально (к 1988 году) стандартизованы были следующие уровни (наименования соответствующих документов ANSI / ISO для FDDI приведены в табл. 6.2):
— PMD (physical medium dependent) — нижний подуровень физического уровня. Его спецификации определяют требования к среде передачи (многомодовый волоконно-оптический кабель) к оптическим приемопередатчикам (допустимую мощность и рабочую длину волны 1300 нм), максимальное допустимое расстояние между станциями (2 км), типы разъемов, функционирование оптических обходных переключателей (optical bypass switches), а также представление сигналов в оптических волокнах.
— PHY (physical) — верхний подуровень физического уровня. Он определяет схему кодирования и декодирования данных между МАС-уровнем и уровнем PMD, схему синхронизации и специальные управляющие символы. В его спецификации входит: кодирование информации в соответствии со схемой 4В/5В; правила тактирования сигналов; требования к стабильности тактовой частоты 125 МГц; правила преобразования информации из параллельной формы в последовательную.
— MAC (media access control) — уровень управления доступом к среде. Этот уровень определяет: процессы управления маркером (протокол передачи, правила захвата и ретрансляции маркера); формирование, прием и обработку кадров данных (их адресацию, обнаружение ошибок и восстановление на основе проверки 32-разрядной контрольной суммы); механизмы распределения полосы пропускания между узлами.
— SMT (station management) — уровень управления станцией. Этот специальный всеобъемлющий уровень определяет: протоколы взаимодействия этого уровня
с уровнями PHY, PMD и MAC; управление станциями и концентраторами;
процессы инициализации кольца и контроль за соединениями между узлами;
обработку аварийных ситуаций (алгоритмы обнаружения ошибок и
восстановления после сбоев).
Позже (1993-1994 гг.) к спецификациям уровня PMD добавляются новые спецификации, стандартизующие два других интерфейса, соответственно на одномодовое волокно и витую пару:
— SMF-PMD (Single Mode Fiber PMD) — нижний подуровень физического уровня, предполагающий использование лазерных передатчиков и одномодового оптического волокна.
— TP-PMD (Twisted Pair PMD). Подкомитетом ANSI в 1994 году была завершена разработка нового стандарта FDDI TP-PMD. Этот стандарт предусматривает использование неэкранированной витой пары категории 5 (UTP Cat.5) с соединителями RJ-45 (CDDI или FDDI на медном кабеле ), а также экранированной витой пары (STP IBM Type 1) с соединителями DB-9 (SDDI). Максимальное расстояние по медному кабелю в обоих случаях не должно превосходить 100 метров.
Тблица 6.2. Основные стандарты ANSI/ISO для FDDI
- что такое голова бентама
- megogo или ivi что выбрать