какой организм не имеет клеточного строения

Неклеточные формы жизни. Клеточные формы жизни

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Неклеточные формы жизни

1. Во всем многообразии организмов можно выделить две резко различающиеся группы форм жизни:

К неклеточным формам жизни относятся вирусы, которые проявляют жизнедеятельность только в стадии внутриклеточ­ного паразитизма. Благодаря своей незначительной величине вирусы могут проходить через любые фильтры, в том числе каолиновые, имеющие наиболее мелкие поры, поэтому перво­начально они назывались фильтрующимися вирусами.

Существование вирусов было доказано русским ботаником Д.И. Ивановским в 1892 г., но увидеть их удалось лишь намного позже. Большинство вирусов имеют субмикроскопические размеры, поэтому для изучения их строения пользуются элек­тронным микроскопом. Наиболее мелкие вирусы, например возбудитель ящура, немногим превышают молекулу яичного белка, но встречаются и крупные вирусы, такие, как возбуди­тель оспы, которые видны в световой микроскоп.

2. Зрелые частицы вирусов — вирионы, или вироспоры, — состоят:

• из белковой оболочки;

– нуклеокапсида, в котором сосредоточен генетический матери­ал. Он представлен нуклеиновой кислотой:

• одни вирусы содержат дезоксирибонуклеиновую (ДНК);

• другие — рибонуклеиновую кислоту (РНК).

На стадии вироспоры никакие проявления жизни не обнару­живаются. И в науке нет единого мнения о том, можно ли ви­русы на этой стадии считать живыми. Некоторые из вирусов могут кристаллизоваться наподобие неживого вещества, но, проникая в клетки чувствительных к ним организмов, прояв­ляют все признаки живого. Таким образом, вирусы представ­ляют собой своего рода мост, связывающий в единое целое мир организмов с неживым органическим веществом. Вироспора — лишь одна из стадий существования вируса. В жизненном цикле вирусов можно выделить следующие этапы’.

В период латентной стадии вирус как бы исчезает. Его не уда­ется выделить из клетки, но в этот период вся клетка синтези­рует необходимые для вируса белки и нуклеиновые кислоты, в результате чего образуется новое поколение вироспор.

3. Описаны сотни вирусов, вызывающих заболевания у растений, животных и человека. К числу вирусных заболеваний человека относятся:

Группа вирусов, приспособившаяся к паразитированию в клетках бактерий и не проявляющая свойств жизни вне этих клеток, по­лучила название фагов.

Основные характеристики фагов состоят в следующем:

Иногда проникновение фагов в клетку не сопровождается ли­зисом бактерии, а ДНК фага включается в наследственные структуры бактерии и передается ее потомкам. Это может про­должаться на протяжении многих поколений потомков бакте­риальной клетки, воспринявшей фаг. Такие бактерии получи­ли название лизогенных. Под влиянием внешних факторов, особенно лучистой энергии, фаг в лизогенных бактериях на­чинает проявлять себя, и бактерии подвергаются лизису. Эта особенность лизогенных бактерий сделала их обязательными “пассажирами” космических кораблей, где они служат индика­тором проникновения космической радиации в кабину корабля. Их используют также для изучения явлений наследственности.

Вопрос 14. Клеточные формы жизни

1. Основную массу живых существ составляют организмы, обла­дающие клеточной структурой. В процессе эволюции органического мира клетка оказалась единственной элементарной систе­мой, в которой возможно проявление всех закономерностей, характеризующих жизнь.

Организмы, имеющие клеточное строение, делятся на две кате­гории:

Различия между прокариотами и эукариотами гораздо более существенны, чем между высшими растениями и животными.

2. Прокариоты — доядерные организмы — не имеют типичного яд­ра, заключенного в ядерную мембрану. Генетический материал находится у них в нуклеоиде и представлен единственной ни­тью ДНК, образующей замкнутое кольцо. Эта нить не приоб­рела еще сложного строения, характерного для хромосом, и называется гонофором. Деление клетки только амитотическое. В клетке прокариот отсутствуют:

К прокариотам относятся бактерии и сине-зеленые водоросли, объединяемые общим термином “дробянки”. Клетка типичных дробянок покрыта оболочкой из целлюлозы. Дробянки играют существенную роль в круговороте веществ в природе:

• сине-зеленые водоросли — синтезаторы органического вещества;

• бактерии – минерализаторы органического вещества. Многие бактерии имеют медицинское и ветеринарное значение как возбудители инфекционных заболеваний.

3. Из организмов, имеющих клеточное строение, наиболее прими­тивны микоплазмы бактериоподобные существа, ведущие паразитический или сапрофитный образ жизни. По размерам микоплазмы приближаются к вирусам. Самые мелкие клетки микоплазм крупнее вируса гриппа, но мельче вируса коровьей оспы. Если вирус гриппа имеет диаметр от 0,08 до 0,1 мкм, а вирус коровьей оспы — от 0,22 до 0,26 мкм, то диаметр мико­плазмы — возбудителя повального воспаления легких рогатого скота — колеблется от 0,1 до 0,2 мкм.

В отличие от вирусов микоплазма способна проявлять жизне­деятельность подобно организмам с клеточным строением. Эти бактериоподобные формы могут:

• самостоятельно расти и размножаться на синтетической среде;

• их клетка построена из сравнительно небольшого числа моле­кул (около 1200), но имеет полный набор макромолекул, ха­рактерных для любых клеток (белки, ДНК и РНК);

• клетка микоплазмы содержит около 300 различных ферментов.

По некоторым признакам клетки микоплазм стоят ближе к клеткам животных, чем растений. Они не имеют жесткой обо­лочки, окружены гибкой мембраной; состав липидов близок к таковому в клетках животных.

4. Эукариоты — ядерные организмы, имеющие ядро, окруженное ядерной мембраной.

Генетический материал сосредоточен преимущественно в хро­мосомах, имеющих сложное строение и состоящих из нитей ДНК и белковых молекул. Деление клеток митотическое. Из органелл у них имеются:

• пластиды. Эукариоты бывают:

Кроме того, эукариот принято делить на царства, которые от­личаются по ряду признаков, например по типу питания.

• царство растений. У большинства растений тип питания автотрофный;

• царство животных, для которых характерен гетеротрофный тип питания;

• царство грибов с сапрогетеротрофным типом питания.

Однако провести четкую грань между всеми растениями и все­ми животными не удается.

Разделение эукариот на три царства:

Вопрос 15. Эукариотические и прокариотические клетки

1. Характеристика прокариотических клеток

2. Характеристика эукариотических клеток

3. Основные формы эукариотических клеток

1. Основные характеристики прокариотических клеток состоят в следующем:

В прокариотических клетках, способных к фотосинтезу (сине-зеленые водоросли, зеленые и пурпурные бактерии), имеются различно структурированные крупные выпячивания мембра­ны — тилакоиды, по своей функции соответствующие пласти­дам эукариот. Эти же тилакоиды (или в бесцветных клетках — более мелкие выпячивания мембраны, а иногда даже сама плазматическая мембрана) в функциональном отношении за­меняют митохондрии.

Другие сложно дифференцированные выпячивания мембраны называют мезосомами; их функция неясна. Только некоторые органеллы прокариотической клетки гомологичны соответст­вующим органеллам эукариот. Для прокариот характерно на­личие муреинового мешка — механически прочного элемента клеточной стенки.

2. Средняя величина эукариотической клетки около 13 мкм (большие колебания в размерах). Клетка разделена внутренни­ми мембранами на различные компартменты (реакционные пространства).

От протоплазмы (цитоплазмы) оболочкой из двух мембран от­граничены три вида органелл (пласты):

• пластиды (последние только у растений).

Пластиды служат главным образом для фотосинтеза, а мито­хондрии — для выработки энергии. Все пласты содержат ДНК в качестве носителя генетической информации.

Цитоплазма содержит различные органеллы, большей частью видимые только с помощью электронного микроскопа, в том числе рибосомы, которые имеются также в пластидах и мито­хондриях. Все органеллы лежат в матриксе (это та часть цито­плазмы, которая даже в электронном микроскопе представля­ется гомогенной).

3. Существуют три основные формы эукариотических клеток.

Источник

ГДЗ биология 5 класс Пасечник С бабочкой Дрофа 2020 Линейный курс Задание: 9 Организм – единое целое

Стр. 61. Вопросы в начале параграфа

№ 1. Что такое клетка?

Клеткой называют структурно-функциональную элементарную единицу строения и жизнедеятельности всех живых организмов на нашей планете, которая способна к обмену веществ, саморегуляции, самовоспроизведению и несет в себе гены.

№ 2. Каковы общие черты строения клетки?

Каждая клетка состоит из клеточной мембраны, ядра, цитоплазмы, органелл. Только при наличии этих компонентов и при условии их тесного взаимодействия друг с другом и с окружающей средой клетки могут нормально жить и функционировать.

№ 3. От чего зависят особенности строения клетки?

Особенности строения клетки зависят от органелл, из которых она состоит, а также от условий и функций, которые она выполняет. Форма клетки зависит от ее функционального приспособления, вязкости и поверхностного натяжения протоплазмы, механического воздействия прилегающих клеток.

Стр. 66. Вопросы после параграфа

№ 1. Что представляют собой организмы? Какие они бывают по клеточному строению?

Организмы представляют собой живые тела, которые обладают совокупностью свойств (обмен веществ, способность к самовоспроизведению, сохранение наследственных признаков, самоподдерживание своего строения и организации), отличающих их от неживой материи.

По клеточному строению разделяют одноклеточные и многоклеточные организмы. Одноклеточные организмы состоят из одной клетки, а потому невидимы для нас. Чтобы их рассмотреть, нужно использовать специальный увеличительный прибор – микроскоп. К таким организмам относятся бактерии, а также некоторые виды растений, грибов и даже животных. Многоклеточные организмы состоят из двух и более клеток. Это все остальные живые организмы.

Также существуют организмы, которые имеют неклеточное строение. Представитель такого вида – вирусы. Их особенность в том, что все свойства живого организма (рост, питание, размножение и т.д.) они начинают проявлять только тогда, когда проникают в клетки другого живого организма.

№ 2. Назовите основные уровни организации многоклеточного организма.

В строении многоклеточного организма выделяют несколько уровней организации:

Системный (уровень систем органов);

№ 3. Что такое ткань?

Ткань – это совокупность клеток и межклеточного пространства, которые объединены между собой общим происхождением, строением и выполняемыми функциями.

№ 4. От чего зависит наличие различных органов у растений и животных?

Наличие различных органов у растений и животных зависит от того, в какой среде они обитают, чем питаются, какие способы для размножения используют.

Стр. 67. Подумайте

Какова причина разнообразия формы и размеров различных клеток, тканей, органов и систем органов в многоклеточном организме?

Основная причина разнообразия форм (округлая, цилиндрическая, дисковидная, призматическая, звездчатая и т.д.) и размеров (маленькие, большие) различных клеток заключается в функциях, которые они выполняют. Сами функции в клетке распределены между разными органоидами в ее составе – клеточным ядром, митохондриями и т.д.

Например, мышечная ткань состоит из клеток, которые могут менять свой размер, то есть, сокращаться. Соединительная ткань образована не только разными по форме клетками, но и большим количеством плотного или жидкого межклеточного вещества. Нервная ткань образована глиальными и нервными клетками. Эпителиальная ткань образована большим количеством плотно прилегающих друг к другу клеток и небольшого количества межклеточного вещества.

© 2021Copyright. Все права защищены. Правообладатель SIA Ksenokss.
Адрес: 1069, Курземес проспект 106/45, Рига, Латвия.
Тел.: +371 29-851-888 E-mail: [email protected]

Источник

Клеточное строение организмов

Теория для подготовки к блоку №2 ОГЭ по биологии: признаки живых организмов

Химический состав живых организмов

Химический состав живых организмов можно выразить в двух видах: атомный и молекулярный. Атомный (элементный) состав показывает соотношение атомов элементов, входящих в живые организмы. Молекулярный (вещественный) состав отражает соотношение молекул веществ.

Вода — преобладающий компонент всех живых организмов. Среднее содержание воды в клетках большинства живых организмов составляет около 70 %.

Углеводы — органические соединения, состоящие из одной или многих молекул простых сахаров. Содержание углеводов в животных клетках составляет 1—5 %, а в некоторых клетках растений достигает 70 %.

Липиды — жиры и жироподобные органические соединения, практически нерастворимые в воде. Их содержание в разных клетках сильно варьирует: от 2—3 до 50—90% в клетках семян растений и жировой ткани животных.

Строение клетки

Становление клеточной теории

Основные положения клеточной теории

Типы клеточной организации

Строение эукариотической клетки

Типичная эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра.

какой организм не имеет клеточного строения

Клеточная оболочка

Углеродный компонент в мембране животных клеток называется гликокаликсом.

Поглощение и выделение твердых и крупных частиц получило соответственно названия фагоцитоз и обратный фагоцитоз, жидких или растворенных частичек – пиноцитоз и обратный пиноцитоз.

Цитоплазма

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из гиалоплазмы и находящихся в нем разнообразных внутриклеточных структур.

Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящиеся в постоянном движении. Способность к движению или, течению цитоплазмы, называют циклозом.

Матрикс – это активная среда, в которой протекают многие физические и химические процессы и которая объединяет все элементы клетки в единую систему.

Цитоплазматические структуры клетки представлены включениями и органоидами. Включения – относительно непостоянные, встречающиеся в клетках некоторых типов в определенные моменты жизнедеятельности, например, в качестве запаса питательных веществ (зерна крахмала, белков, капли гликогена) или продуктов подлежащих выделению из клетки. Органоиды – постоянные и обязательные компоненты большинства клеток, имеющим специфическую структуру и выполняющим жизненно важную функцию.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Аппарат Гольджи

Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Митохондрии

В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) — митохондрии (греч. «митос» — нить, «хондрион» — зерно, гранула).

Митохондрии называют «силовыми станциями» клеток» так как их основная функция — синтез аденозинтрифосфорной кислоты ( АТФ ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Лизосомы

Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

Пластиды

Рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

Микротрубочки и микрофиламенты

Нитевидные структуры, состоящие из различных сократительных белков и обуславливающие двигательные функции клетки. Микротрубочки имеют вид полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламенты представляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина.

В процессе эволюций разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функции. Это требовало наличия в них особых органоидах, которые называют специализированными в отличие от рассмотренных выше органоидов общего назначения. К их числу относят сократительные вакуоли простейших, миофибриллы мышечного волокна, нейрофибриллы и синаптические пузырьки нервных клеток, микроворсинки эпителиальных клеток, реснички и жгутики некоторых простейших.

Ядро – наиболее важный компонент эукариотических клеток. Большинство клеток имеют одно ядро, но встречаются и многоядерные клетки (у ряда простейших, в скелетных мышцах позвоночных). Некоторые высоко специализированные клетки утрачивают ядра ( эритроциты млекопитающих, например).

Ядерная оболочка образована двумя мембранами (наружной и внутренней) и содержит многочисленные поры, через которые между ядром и цитоплазмой происходит обмен различными веществами.

Ядрышко – небольшое округлое тельце, интенсивно окрашивающееся и обнаруживающееся в ядрах неделящихся клеток. Функция ядрышка – синтез рРНК и соединение их с белками, т.е. сборка субчастиц рибосом.

Хроматин – специфически окрашивающиеся некоторыми красителями глыбки, гранулы и нитчатые структуры, образованные молекулами ДНК в комплексе с белками. Различные участки молекул ДНК в составе хроматина обладает разной степенью спирализации, а потому различаются интенсивностью окраски и характером генетической активности. Хроматин представляет собой форму существования генетического материала в не делящихся клетках и обеспечивает возможность удвоение и реализации заключенной в нем информации. В процессе деления клеток происходит спирализация ДНК и хроматиновые структуры образуют хромосомы.

Хромосомы – плотные, интенсивно окрашивающиеся структуры, которые являются единицами морфологической организации генетического материала и обеспечивают его точное распределение при делении клетки.

Число хромосом в клетках каждого биологического вида постоянно. Обычно в ядрах клеток тела (соматических) хромосомы представлены парами, в половых клетках они не парны. Одинарный набор хромосом в половых клетках называют гаплоидным (n), набор хромосом в соматических клетках диплоидным (2n). Хромосомы разных организмов различаются размерами и формой.

Источник

В настоящее время на Земле описано более 2,5 млн видов живых организмов. Однако реальное число видов на Земле в несколько раз больше, так как многие виды микроорганизмов, насекомых и др. не учтены. Кроме того, считается, что современный видовой состав — это лишь около 5% от видового разнообразия жизни за период ее существования на Земле.
Для упорядочения такого многообразия живых организмов служат систематика, классификация и таксономия.

Систематика — раздел биологии, занимающийся описанием, обозначением и классификацией существующих и вымерших организмов по таксонам.
Классификация — распределение всего множества живых организмов по определённой системе иерархически соподчинённых групп — таксонов.
Таксономия — раздел систематики, разрабатывающий теоретические основы классификации. Таксон — искусственно выделенная человеком группа организмов, связанных той или иной степенью родства, и в то же время достаточно обособленная, чтобы ей можно было присвоить определённую таксономическую категорию того или иного ранга.

В современной классификации существует следующая иерархия таксонов:

Кроме того, выделяют промежуточные таксоны: над- и подцарства, над- и подотделы, над- и подклассы и т. д.

Систематика живых организмов постоянно изменяется и обновляется. В настоящее время она имеет следующий вид:

Ряд учёных выделяет в надцарстве Прокариоты одно царство Дробянки, которое включает три подцарства: Бактерии, Архебактерии и Цианобактерии.

Царство вирусы

Вирусы были открыты в 1892 г. русским биологом Д. И. Ивановским, ставшим основоположником вирусологии. Они являются неклеточной формой жизни и занимают пограничное положение между неживой и живой материей. Вирусы — внутриклеточные паразиты и могут проявлять свойства живых организмов, только попав внутрь клетки.

Отличия вирусов от неживой природы:

Отличия вирусов от клеточных организмов:

Вирусы существуют в двух формах: покоящейся (внеклеточной), когда их свойства как живых систем не проявляются, и внутриклеточной, когда осуществляется размножение вирусов. Простые вирусы (например, вирус табачной мозаики) состоят из молекулы нуклеиновой кислоты и белковой оболочки — капсида.

Некоторые более сложные вирусы (гриппа, герпеса и др.), помимо белков капсида и нуклеиновой кислоты, могут содержать липопротеиновую мембрану, углеводы и ряд ферментов. Белки защищают нуклеиновую кислоту и обусловливают ферментативные и антигенные свойства вирусов. Форма капсида может быть палочковидной, нитевидной, сферической и др.

В зависимости от присутствующей в вирусе нуклеиновой кислоты различают РНК-содержащие и ДНК-содержащие вирусы. Нуклеиновая кислота содержит генетическую информацию, обычно о строении белков капсида. Она может быть линейная или кольцевидная, в виде одно- или двуцепочечной ДНК, одно- или двуцепочечной РНК.

При проникновении вируса внутрь клетки специальные белки вирусной частицы связываются с белками-рецепторами клеточной оболочки. В животную клетку вирус может проникать при процессах пино- и фагоцитоза, в растительную клетку — при различных повреждениях клеточной стенки. Бактериофаги (вирусы, паразитирующие на бактериях), как правило, не попадают внутрь клетки, так как этому препятствуют толстые клеточные стенки бактерий. Внутрь клетки проникает только нуклеиновая кислота вируса.
Вирус подавляет существующие в клетке процессы транскрипции и трансляции. Он использует их для синтеза собственных нуклеиновой кислоты и белка, из которых собираются новые вирусы. После этого клеточные оболочки разрушаются и новообразованные вирусы покидают клетку, которая при этом погибает.
Полагают, что происхождение вирусов связано с эволюцией каких-то клеточных форм, которые в ходе приспособления к паразитическому образу жизни вторично утратили клеточное строение.
Вирусы способны поражать различные живые организмы. Первым открытым вирусом был вирус табачной мозаики, поражающий растения. Вирусную природу имеют такие заболевания животных и человека, как натуральная оспа, бешенство, энцефалиты, лихорадки, инфекционные гепатиты, грипп, корь, бородавки, многие злокачественные опухоли, СПИД и др. Кроме того, вирусы способны вызывать генные мутации.

Вирус, вызывающий заболевание СПИДом (синдром приобретённого иммунодефицита), поражает клетки крови, обеспечивающие иммунитет организма. В результате больной СПИДом может погибнуть от любой инфекции. Вирусы СПИДа могут проникнуть в организм человека во время половых сношений, во время инъекций или операций при несоблюдении условий стерилизации. Профилактика СПИДа заключается в избегании случайных половых связей, использовании презервативов, применении одноразовых шприцев.

Бактерии

Все прокариоты принадлежат к одному царству Дробянки. В его состав входят бактерии и сине-зелёные водоросли.

Строение и жизнедеятельность бактерий.

Прокариотические клетки не имеют ядра, область расположения ДНК в цитоплазме называется нуклеоидом, единственная молекула ДНК замкнута в кольцо и не связана с белками, клетки меньше эукариотических, в состав клеточной стенки входит гликопептид — муреин, поверх клеточной стенки располагается слизистый слой, выполняющий защитную функцию, отсутствуют мембранные органоиды (хлоропласты, митохондрии, эндоплазматическая сеть, комплекс Гольджи), их функции выполняют впячивания плазматической мембраны (мезосомы), рибосомы мелкие, микротрубочки отсутствуют, поэтому цитоплазма неподвижна, нет центриолей и веретена деления, реснички и жгутики имеют особую структуру. Деление клеток осуществляется путём перетяжки (митоза и мейоза нет). Этому предшествует репликация ДНК, затем две копии расходятся, увлекаемые растущей клеточной мембраной.

Выделяют три группы бактерий: архебактерии, эубактерии и цианобактерии.

Архебактерии — древнейшие бактерии (метанообразующие и др., всего известно около 40 видов). Имеют общие черты строения прокариот, но значительно отличаются по ряду физиологических и биохимических свойств от эубактерий. Эубактерии — истинные бактерии, более поздняя форма в эволюционном отношении. Цианобактерии (цианеи, сине-зелёные водоросли) — фототрофные прокариотические организмы, осуществляющие фотосинтез подобно высшим растениям и водорослям с выделением молекулярного кислорода.

По форме клеток различают следующие группы бактерий: шаровидные — кокки, палочковидные — бациллы, дугообразно изогнутые — вибрионы, спиралеобразные — спириллы и спирохеты. Многие бактерии способны к самостоятельному движению за счёт жгутиков или благодаря сокращению клеток. Бактерии — одноклеточные организмы. Некоторые способны образовывать колонии, но клетки в них существуют независимо друг от друга.

В неблагоприятных условиях некоторые бактерии способны образовывать споры за счёт формирования плотной оболочки вокруг молекулы ДНК с участком цитоплазмы. Споры бактерий служат не для размножения, как у растений и грибов, а для защиты организма от воздействия неблагоприятных условий (засухи, нагревания и др.).

По отношению к кислороду бактерии делят на аэробов (обязательно нуждающиеся в кислороде), анаэробов (погибающие в присутствие кислорода) и факультативные формы.

По способу питания бактерии делятся на автотрофные (в качестве источника углерода используют углекислый газ) и гетеротрофные (используют органические вещества). Автотрофные, в свою очередь, делятся на фототрофов (используют энергию солнечного света) и хемотрофов (используют энергию окисления неорганических веществ). К фототрофам относят цианобактерии (сине-зелёные водоросли), которые осуществляют фотосинтез, как и растения, с выделением кислорода, и зелёные и пурпурные бактерии, которые осуществляют фотосинтез без выделения кислорода. Хемотрофы окисляют неорганические вещества (нитрифицирующие бактерии, азотфиксирующие бактерии, железобактерии, серобактерии и др.).

Гетеротрофы делятся на сапрофитов (используют органические вещества мёртвой массы) и паразитов (используют органические вещества живых организмов). Гетеротрофы могут окислять органические вещества при участии кислорода (дыхание) или в анаэробных условиях (брожение). Выделяют несколько типов брожения: спиртовое, молочнокислое, уксусное, маслянокислое и др.

Размножение бактерий.

Бактерии размножаются бесполым путём — делением клетки (у прокариот митоза и мейоза нет) при помощи перетяжек или перегородок, реже почкованием. Этим процессам предшествует удвоение кольцевой молекулы ДНК.

Кроме того, для бактерий характерен половой процесс — конъюгация. При конъюгации по специальному каналу, образующемуся между двумя клетками, фрагмент ДНК одной клетки передаётся другой клетке, то есть изменяется наследственная информация, содержащаяся в ДНК обоих клеток. Поскольку количество бактерий при этом не увеличивается, для корректности используют понятие «половой процесс», но не «половое размножение».

Роль бактерий в природе и значение для человека

Благодаря очень разнообразному метаболизму бактерии могут существовать в самых различных условиях среды: в воде, воздухе, почве, живых организмах. Велика роль бактерий в образовании нефти, каменного угля, торфа, природного газа, в почвообразовании, в круговоротах азота, фосфора, серы и других элементов в природе. Сапротрофные бактерии участвуют в разложении органических останков растений и животных и в их минерализации до СО2, Н2О, H2S, NH3 и других неорганических веществ. Вместе с грибами они являются редуцентами. Клубеньковые бактерии (азотфиксирующие) образуют симбиоз с бобовыми растениями и участвуют в фиксации атмосферного азота в минеральные соединения, доступные растениям. Сами растения такой способностью не обладают.

Человек использует бактерии в микробиологическом синтезе, в очистных сооружениях, для получения ряда лекарств (стрептомицин), в быту и пищевой промышленности (получение кисломолочных продуктов, виноделие).

Однако бактерии приносят не только пользу, но и вред. Бактерии-паразиты разрушают клетки хозяина или выделяют токсические вещества. Они являются возбудителями опасных инфекционных заболеваний, таких как чума, холера, дифтерия, дизентерия, туберкулез и др. Для борьбы с ними проводят вакцинации населения, дезинфекцию предметов, стерилизацию или пастеризацию воды и продуктов питания.

Царство грибы

Отличия грибов от растений:

Отличия грибов от животных:

Лишайники

Размножение лишайников осуществляется либо половым путём (за счёт грибного компонента), либо бесполым (образование спор или отламывание кусочков слоевища).
Значение лишайников. Благодаря своей «двойственной» природе лишайники очень выносливы. Это объясняется возможностью как автотрофного, так и гетеротрофного питания, а также способностью впадать в состояние анабиоза, при котором организм сильно обезвоживается. В таком состоянии лишайники могут переносить действие различных неблагоприятных факторов среды (сильный перегрев или переохлаждение, практически полное отсутствие влаги и т. п.). Биологические особенности позволяют лишайникам заселять самые неблагоприятные местообитания. Они часто являются пионерами заселения того или иного участка суши, разрушают горные породы и формируют первичный почвенный слой, который затем осваивают другие организмы.
В то же время лишайники очень чувствительны к загрязнению среды различными химическими веществами, что позволяет использовать их в качестве биоиндикаторов состояния окружающей среды.
Лишайники используют для получения лекарственных препаратов, лакмуса, дубильных и красящих веществ. Ягель (олений мох) является основным кормом для северных оленей. Некоторые народности употребляют лишайники в пищу. Поскольку рост лишайников очень медленный, необходимы меры по его охране: регулирование выпаса оленей, упорядоченное передвижение автотранспорта и др.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *