какой орган в какое время активен
Почки имеют биологические часы, влияющие на многие обменные процессы в организме
Биологические часы почек играют важную роль для поддержания баланса в организме. Новое исследование опубликовано в журнале Американского общества нефрологии (JASN).
Биологические часы почек играют важную роль для поддержания баланса в организме. Новое исследование опубликовано в журнале Американского общества нефрологии (JASN).
Многие процессы в организме следуют за естественным суточным ритмом или циркадными часами, которые регулируют широкий спектр метаболических и гомеостатических процессов в ряде органов, в том числе почках. Тем не менее, роль почечных циркадных часов оставалась неизвестна. Специалисты из Национального института здравоохранения и медицинских исследований Франции находят, что почки обладает собственным внутренним циркадным ритмом, который регулирует и координирует различные функции органа.
Поскольку образование мочи и экскреция (выведение из организма веществ, которые образовались в процессе метаболизма) – ритмический процесс, который можно легко отследить, эксперты предположили, что, по крайней мере, часть этой цикличности зависит от часового циркадного механизма.
Заблокировав ген, который играет важную роль в системе циркадных часов, команда ученых обнаружила, что они отвечают за адаптацию функции почек в светлой и темной фазе дня, что соответствует фазе активности и отдыха. Эта адаптация оказывает важное влияние на уровни различных аминокислот, липидов и других компонентов крови в организме. Кроме того, у людей, которые принимают лекарства, циркадные часы почек контролирует процесс вывода препаратов из организма и, следовательно, могут влиять на продолжительность действия лекарственного средства.
Таким образом, специалисты установили, что циркадные ритмы в почках контролируют различные метаболические и гомеостатических процессы, в частности, участвуя в распределение лекарственных средств.
КОНТАКТЫ
197136, г. Санкт-Петербург
ул. Ленина, д. 34
Наука сна: внутренние часы, биологические ритмы и страшные сновидения
Что такое циркадные ритмы и как наладить свой сон в подростковом возрасте. Советы сомнолога Романа Бузунова.
Вокруг подросткового сна много мифов: тинейджеры поздно ложатся спать и долго спят, потому что ленятся, или убеждают себя, что среди недели могут спать меньше восьми часов, а на выходных отсыпаться. Родители и педагоги стараются решить проблемы жёстким режимом, ранними подъёмами и запретом на использование гаджетов. Правда ли, что сон подростков отличается от сна взрослого? Отдыхает ли мозг ночью? Можно ли заставить себя лечь пораньше? Мы поговорили с сомнологом Романом Бузуновым и разобрались в науке сна.
президент «Российского общества сомнологов»,
профессор, доктор медицинских наук
Что такое циркадные ритмы, или почему мы спим ночью
Человек — это дневной вид. У нас есть суточные циркадные ритмы (циклы сна и бодрствования), которые настроены на то, чтобы мы бодрствовали днём и спали ночью. Мы так живём не потому, что привыкли, — внутри нас тикают часы, которые регулируют активность мозга. Это наш биологический внутренний механизм, то есть цикл «сон — бодрствование» работает не только из-за связи с внешними стимулами типа темноты или времени суток.
В шестидесятые годы прошлого века профессор Мишель Сифр поставил на себе эксперимент «Вне времени» по изучению биологических ритмов. Вместе со своими студентами он несколько месяцев провёл в пещере с постоянной освещённостью, влажностью, температурой и без часов. Результаты эксперимента показали, что даже без внешних раздражителей (естественного света, изменения погоды, посторонних шумов) человек всё равно какую-то часть времени спит, а какую-то бодрствует. Он делает это с определённой периодичностью, а не как попало.
Испытуемые начали жить по своим внутренним часам, и оказалось, что наш внутренний цикл длится чуть больше 24 часов, поэтому за время эксперимента профессор со студентами насчитали меньше суток, чем провели в пещере на самом деле.
Как работают наши внутренние часы и с чем связаны циркадные ритмы
Учёные стали искать, где находятся эти часы, и нашли их в центре мозга, в месте под страшным названием «супрахиазматическое ядро». Эта часть командует всеми остальными часами в нашем организме и устанавливает центральное время.
Внутренние часы — это гены и белки, которые очень хитро регулируют друг друга, нашу активность, аппетит, секрецию гормонов, температуру тела, артериальное давление и другие показатели. Часы идут даже в клетках нашей кожи: они тикают уже несколько миллиардов лет. И у нас, и у мухи они устроены похоже. Это очень древний и надёжный механизм, против которого идти сложно.
Нарушение и регуляция циркадных ритмов
Рассинхронизация часов и нарушение циркадных ритмов плохо сказывается на общем состоянии человека. Если мы ложимся в разное время, учимся по ночам, спим разное количество часов в будни и в выходные, мы сбиваем внутренние ритмы. Организм не успевает синхронизироваться сам с собой.
В результате может получиться так, что мозг будет считать, что сейчас день, печень — что сейчас ночь, а гормоны — что вечер. И это может сильно ударить по здоровью. Почему?
Во сне мозг не отключается — он просто занят другой работой
Центры мозга, которые днём отвечали за взаимодействие человека с окружающей средой, помогали нам обрабатывать информацию и избегать опасности, ночью начинают руководить организмом и восстанавливать его жизнеспособность. Они настраивают работу печени, лёгких, лимфатической системы, иммунитета. Во время сна все внутренние процессы восстанавливаются.
Параллельно эти процессы идти не могут: невозможно одновременно расходовать энергию и накапливать. Когда мозг включает каналы, которые активно работают вовне, у него не остаётся ресурсов обрабатывать что-то внутри. Когда машина едет, сложно заниматься её техобслуживанием и менять колёса на ходу.
Восстановление работоспособности происходит преимущественно в первые четыре-пять часов сна. В оставшиеся три-четыре часа мозг в основном «переваривает» информацию, запоминает нужное и забывает ненужное, сортирует новый опыт по различным системам памяти, формирует ассоциации. Информационная фаза обработки накопленного опыта ближе к утру, поэтому и сны нам снятся в это время.
Когда человек спит пять часов, физически он может функционировать: организм всё настроил и наладил, но ментально — нет. Если вдобавок к этому имеются какие-то расстройства сна, мозг отвлекается от своей внутренней работы, и мы хуже себя чувствуем днём, повышаются риски развития депрессии и тревоги.
Сон ничем не заменить и никак не компенсировать
Подросткам нужен долгий сон от 8 до 10 часов: это реальная потребность организма. Если мы будем её удовлетворять, днём мы будем работать на 100%. Если мы спим меньше, начинаем наносить себе ущерб. Если намного больше, это признак каких-то фоновых проблем.
Рекомендованная продолжительность сна по данным National Sleep Foundation
Недостаток сна трудно осознать
Когда мы недостаточно спим, мы сами у себя отнимаем силы и не даём организму работать на максимум. Если человек не будет спать в течение суток, по исследованиям, он не восстановится даже за неделю.
Недостаток сна бьёт по функциям префронтальной коры: снижает способность к эмоциональному контролю и повышает риск депрессивных состояний. У подростков эти функции только начинают формироваться, а недостаток сна их сразу выбивает. Поэтому невыспавшегося человека так легко вывести из равновесия, довести до слёз или спровоцировать на другую бурную реакцию.
В подростковом возрасте ритмы сдвигаются на совиный тип
СХЕМА ЦИРКАДНЫХ РИТМОВ
Синяя линия — среднестатистический взрослый
Жёлтая линия — среднестатистический подросток
Спад бодрости у среднестатистического взрослого в 4–5 часов ночи
У среднестатистического подростка в 6–7 часов утра
У циркадных ритмов есть разные варианты — в зависимости от них, человек будет склонен либо к более ранней активности (жаворонки), либо к более поздней (совы). Это не культурная привычка, а наследуемая вещь.
Среди подростков большой процент сов, поэтому им труднее вставать и ложиться в ранние часы. Самый крепкий сон у них приходится на семь часов утра — время, в которое все обычно встают в школу.
Подъём в самый минимум бодрого состояния влечёт за собой недостаток парадоксального сна — последней фазы, которая критически важна для запоминания и обучения.
С возрастом внутренние часы постепенно ускоряются, и среди взрослых преобладают жаворонки.
Как наладить режим при нарушении циркадного ритма
Соблюдение режима и регуляция света позволяют подстраивать свои внутренние часы под реальность, потихоньку их ускорять или замедлять. Люди, которые живут в Москве по времени Гонконга, вечером носят солнцезащитные очки, чтобы мозг думал, что уже закат, а утром используют светобудильники для имитации восхода.
Налаживать режим после каникул или праздников лучше постепенно, поскольку нужен примерно час в сутки, чтобы организм перестроился на новый режим без последствий. Начинать нужно с того, чтобы раньше вставать на час: волевым усилием заставить себя лечь раньше мы, к сожалению, не можем. Лучше не пытаться этого делать, чтобы не связывать засыпание с тревожностью и не выработать условный рефлекс — «боязнь не заснуть».
Три дополнительных вопроса про сон
🌚 Почему дети лунатят и говорят во сне, а в подростковом возрасте это пропадает
Все системы в нашем организме имеют особенность дозревать. Регуляция сна и бодрствования тоже постепенно налаживается. У детей ещё не очень развит нейрохимический блок, и когда в парадоксальной фазе дети видят сны, они реализуют команды, которые подаёт им мозг: строят гримасы, показывают язык, двигаются. Это нарушение поведения происходит в парадоксальном сне, когда у человека сохранены быстрые рефлексы и он может действовать в соответствии с фабулой сна.
Сноговорение и снохождение происходит во второй фазе сна, когда какая-то часть мозга спит, а другая уже проснулась. Лунатики могут воспроизводить некоторые закрепившиеся рефлексы, выполнять последовательности действий, но делают они всё медленно — у них отсутствуют быстрые рефлексы.
В подростковом возрасте возникает нейрохимический блок, который не пропускает команды и не даёт нашему телу их осуществлять. Получается активный мозг в парализованном теле. Сомнамбулизм к подростковому возрасту тоже обычно пропадает. Если в детстве ходят и разговаривают во сне 10–15% детей, к пубертату нервная система постепенно созревает, снохождение и сноговорение остаётся у 2–3%.
👹 Откуда берутся повторяющиеся страшные сны
Сновидения— это анализ накопленной за день информации, который, правда, может быть алогичным, поскольку в сновидениях преобладают свободные ассоциации. Обычно мы смотрим сны, ненужное забываем, важное — переводим в долгосрочную память и принимаем какие-то решения.
Навязчивые сны обычно бывают после какого-то страшного события. Мозг во сне обращается к этой ситуации, пытается её проанализировать, но не может ни решить, как действовать в будущем, ни забыть, ни принять этот ужас. Мозг не может отложить это и, как заезженная пластинка, постоянно возвращается к одному и тому же сюжету.
🧠 Как работают осознанные сновидения
Во время осознанных сновидений какая-то часть мозга чувствует, что мы во сне, и начинает руководить сном. Человек из исполнителя собственного сна превращается в режиссёра, который может влиять на фабулу. С одной стороны, это классный опыт — ты можешь стать кем угодно и делать что захочешь: задавать себе задачи и решать их, отрабатывать новые навыки во сне, проигрывать страхи. С другой стороны, если слишком увлечься осознанными сновидениями, можно вообще уйти от реальности и жить только во сне.
Сомнология — раздел медицины и нейробиологии, посвящённый исследованиям сна, расстройств сна, их лечению и влиянию на здоровье человека.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter
Новости
Биологические ритмы
Каждый организм имеет встроенные биологические часы, регулирующие химические процессы, возникающие как реакции на внутренние и внешние сигналы. Активность биологических часов человека не одинакова на протяжении суток. За 24 часа они то замедляются, то ускоряются.
Согласно китайской философии, человеческий организм подвержен трем ритмам: интеллектуальному, эмоциональному, и физическому. Эти три биоритма определяют все состояния тела, захватывая даже состояния молекул.
Суточный биоритм начинает функционировать с работы легких (с 3 до 5 часов – время тиньши), поскольку интенсификация активности бронхов и легких – один из начальных этапов пробуждения и подготовки к деятельному состоянию. Необходимо создать внешние условия (открыть форточку) для поступления большего количества кислорода, поскольку в это время мозг особенно в нем нуждается. При недостатке кислорода мозг «забирает последние накопления», и легкие «ослабевают». Таким образов, создаются предпосылки возникновения патологических измененияй в легких. Это время еще называют первой волной саморегуляции психики и физиологии.
В 3 раза повышается склонность к онкологии.
В 6 часов срабатывает «биологический будильник».Оживают все системы организмов, активируется обмен веществ, увеличивается количество Биологические ритмы глюкозы и аминокислот в крови, повышается артериальное давление. На работу здорового организма оказывает благоприятное влияние обливание холодной водой. В 6 – 7 часов особенно сильна именная защита организма.
В период с 7 до 11 часов «сытый организм » начинает бороться с возможными еще скрытыми и проявившимися заболеваниями.
В 9 часов отмечается максимальный выброс гормона коры надпочечников – кортизона, которому отводят роль регулятора нашей активности и тонуса. В крови отмечается суточный минимум лимфоцитов, поэтому снижается иммунитет и повышается опасность заболеваний респираторными инфекциями.
Не стоит принимать лекарственные препараты в это время. Можно дать возможность организму самому побороться с болезнью.
Особенно активно работают отделы мозга, отвечающие за выполнение математических действий.
Это период большого эмоционального и физического напряжения сил. Таким образом, период с 11 до 14 часов – время предельно возможных для организма нагрузок и способность к запоминанию на длительное время. Кроме того, это время, когда меньше всего ощущается боль – подходящий период сходить к стоматологу. 15 часов время максимальной утомляемости. Необходимо дать организму короткий, но эффективный отдых (провести оздоровительную релаксацию длительностью 5 – 10 минут).
С 15 до 17 часов (время шэньши) – солнце жизни (максимальная активность в системе мочевого пузыря). Начало второй волны саморегуляции психики и физиологии. Это время неторопливого и мудрого общения со своей душой, встречи с друзьями ( не следует видеться с недоброжелателями).
Можно вспомнить самое сокровенное, хорошее время для прогулок и решения важных вопросов. 19 – 21 час (время сюйши)– активна система перикарда, отвечающая за вегето – сосудистую нервную регуляцию. Можно снова давать организму высокие нагрузки, активно творить, поскольку система перикарда защищает сердце от эмоциональных бурь.
Это время предназначено для серьезной работы по решению своих жизненных задач. К 21 часу в желудке постепенно снижается выработка желудочного сока, а около полуночи прекращается совсем. Поэтому обильная белковая пища может принести вред. Период с 19 до 21 часа и с 21 до 23 часов можно рассматривать как время работы организма «во вторую смену», выдерживая большие нагрузки. Это время, когда хорошо обдумывается информация, гениальные люди совершают открытия. К 22 часам усиливается выработка серотонина ( гормон хорошего настроения). Это лучшее время для романтических встреч.
С 23 до 1 часа ночи максимальная активность желчного пузыря. Эта система контролирует опорно двигательный аппарат и сексуальную сферу. Созданы условия для проявления агрессивности и гнева. Но, поскольку природа умна, она в это время укладывае человека спать, чтобы он не натворил бед. Во сне вся агрессия устремляется на восстановление сил уставшего организма. Однако, «совы» в это время могут работать без ущерба для своего здоровья. Очень полезно лечь спать именно в это время. 00 часов – благоприятное время для «самопочинки» организма. Быстрее заживают раны, повышается иммунитет.
У бодрствующих в это время людей отмечаются более частые случаи депрессивных состояний, нервные срывы. Таким образом, становится понятно, что сам организм – это точно настроенный механизм, работающий в гармонией с окружающей средой. Он может подстроиться под окружающую среду самостоятельно, нужно только не мешать ему.
Молекулярные часы нашего сердца
В каждой клетке сердца есть встроенные молекулярные часы, и чрезвычайно важно, чтобы ритм работы этих часов был синхронизирован с ритмом главных часов в головном мозге
Автор
Редакторы
Статья на конкурс «био/мол/текст»: Врачи уже давно заметили, что возникновение опасных для жизни обострений сердечно-сосудистых заболеваний, таких как инфаркт миокарда, инсульт, серьезные приступы аритмии, часто связано с определенным временем суток — намного чаще такие осложнения проявляются ранним утром. Заинтересовавшись этой особенностью, доктора провели многочисленные исследования и выяснили, что это явление тесно сопряжено с работой внутренних часов организма, и что при изучении сердечно-сосудистых заболеваний нужно обязательно уделять внимание особенностям регуляции суточных ритмов организма.
Конкурс «био/мол/текст»-2014
Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2014 в номинации «Лучший обзор».
Главный спонсор конкурса — дальновидная компания «Генотек».
Конкурс поддержан ОАО «РВК».
Спонсором номинации «Биоинформатика» является Институт биоинформатики.
Спонсором приза зрительских симпатий выступила фирма Helicon.
Свой приз также вручает Фонд поддержки передовых биотехнологий.
Что такое циркадианный ритм
Мы живем в соответствии с ритмами природы: вслед за ночью неизбежно наступает день, тьму обязательно сменяет свет. И, чтобы приспособиться к этому регулярному, заданному внешней средой чередованию условий, наш организм выработал очень сложный и пока еще окончательно не разгаданный механизм внутренних часов — наш «встроенный хронометр», который физиологи называют суточным или циркадианным (циркадным) ритмом. Если дословно переводить с латинского, то «цирка» означает около, а диа — «день». То есть циркадианный ритм — это ритм с периодом около суток. Зачем же понадобилась эта приставка «около»? Дело в том, что время завершения полного цикла нашего «встроенного хронометра» все еще вызывает споры у ученых, так как внутренняя размеренность организма не вписывается точно в те 24 часа, которые составляют наши астрономические сутки.
В 1962 году физиолог-исследователь Ашофф в качестве эксперимента отправил своих сыновей в звуко- и светонепроницаемый бункер, где они жили, ориентируясь только на свои внутренние ритмы, а не на смену светлого дня и темной ночи. Это исследование показало, что внутренние хронометры регулярной изменчивости физиологических функций человека на самом деле настроены на ритм в 25 часов [1]. Но есть и другое мнение. Например, результаты эксперимента под руководством знаменитого спелеолога Мишеля Сифра продемонстрировали, что у участников, заточенных в пещеру на несколько месяцев, наблюдается постепенный переход с 24-часовых ритмов на 48-часовые: 36 часов человеку нужно было для бодрствования и 12 — для сна [2].
Но, так или иначе, не остается сомнений, что в нашем организме работают внутренние биологические часы, и работают они, как выявили генетические исследования последних лет, в каждой клеточке нашего тела. Генетическую природу биологических ритмов начали раскрывать с 1971 года, когда впервые в мире у мухи дрозофилы был найден часовой ген Per — его назвали сокращением от слова «период» (period) [3]. Было замечено, что мутация в этом гене вызывала у мушек отклонения в периодичности суточного ритма. Эти исследования положили начало целому ряду открытий, в результате которых сформировалось современное представление о молекулярном устройстве биологических часов.
Иерархия внутренних биологических часов
Итак, как же устроены наши внутренние часы? Последние исследования указывают на то, что внутренние задатчики ритма в нашем организме организованы по законам иерархии: здесь есть самые главные часы и подчиненные часики. Главным центром циркадианных часов является супрахиазматическое ядро в головном мозге — это плотное скопление из примерно 20 тысяч нейронов, и расположено оно как раз рядом с центром, регулирующем продукцию гормонов в организме. Что касается подчиненных часиков, то, как показал анализ экспрессии генов в клетках внутренних органов, гены, отвечающие за суточные ритмы, экспрессируются в каждой клетке организма, включая даже соединительную ткань. Это навело ученых на мысль, что каждый орган имеет свои внутренние часы. Собственную часовую систему внутренних органов назвали периферическими часами, а управляющее ими супрахиазматическое ядро — центральными часами (рис. 1). Свой собственный хронометр есть у печени, у кровеносных сосудов, у сердца, у почек. Но для эффективной работы организма чрезвычайно важно, чтобы все часовые механизмы были настроены на слаженную работу в одном ритме — синхронизированы.
Рисунок 1. Иерархия внутренних биологических часов: главным центром циркадианных часов является супрахиазматическое ядро в головном мозге, задающее ритм работы всем клеткам организма посредством вегетативной нервной системы, специализированных гормонов и различных факторов. Подчиненные часы в клетках внутренних органов называются периферическими.
Фазы внутренних хронометров могут сдвигаться под воздействием определенных стимулов, которые способны навязывать свой ритм. Такие стимулы называются цайтгеберами (от нем. Zeit — «время» и geben — «давать») или задатчиками ритма. Каждые часы способны реагировать на свои специфические задатчики ритма. Например, свет задает ритм центральным часам в супрахиазматическом ядре, тогда как непосредственно на периферические часы он не влияет. Цайтгеберами могут быть не только внешние воздействия, но и особенности поведения: режим физической активности, цикл смены сна и бодрствования и даже режим питания. Например, четко было показано, что внутренние часы печени больше настроены на ритмичность приема пищи, чем на ритмы смены светлого и темного периодов суток [4].
Главный физиологический синхронизатор всех периферических часов — супрахиазматическое ядро. Благодаря своим связям со светочувствительными клетками сетчатки глаза, нейроны супрахиазматического ядра способны получать информацию о световом периоде снаружи и подстроить к внешним условиям внутренние ритмы организма. Синхронизация периферических часовых систем осуществляется посредством вегетативной нервной системы специальными гормонами и, возможно, другими, пока еще мало изученными путями. Ученые с каждым годом открывают и подробно описывают все больше новых факторов, влияющих на регуляцию внутренних ритмов [5].
Потеря синхронизации и прогрессирование болезни
Как показывают эксперименты, синхронизация всех внутренних ритмов — крайне важное условие для сохранения здоровья и продолжительности жизни. Когда ученые изучают взаимосвязь между сбоем биологических часов и сердечными заболеваниями, то у них возникает очевидный вопрос, что же первично: поломки во внутренних часах вызывают болезни сердца, или сама сердечная патология является причиной нарушения работы наших встроенных хронометров? В попытке ответить на этот вопрос выдвинуто как минимум две противоположные гипотезы.
В пользу гипотезы о том, что потеря синхронизации внутренних ритмов в возникновении болезни первична, был проведен целый ряд интереснейших экспериментов. Исследователь Тами Мартино анализировал продолжительность жизни золотистых хомячков с особой мутацией в гене tau, которая уменьшает период суточного ритма в периферических часах до 22 часов (рис. 2). Иными словами, внутренние часы у этой линии щекастых грызунов очень спешат. Оказалось, что и общая продолжительность жизни хомячков с мутацией уменьшается на 20%, а умирают они в раннем возрасте от серьезных заболеваний миокарда — фиброза и кардиомиопатий [6].
Рисунок 2. Золотистый хомячок с мутацией в гене tau: внутренние часы хомячка спешат на два часа в сутки. Отсутствие синхронизации внутреннего и внешнего ритмов привело к тому, что у грызуна возникли серьезные проблемы со здоровьем — гипертрофия миокарда.
Однако, когда таким хомячкам создали искусственные условия так, чтобы период чередования света и темноты составлял 22 часа, то сердечная патология сменилась на нормальное функционирование сердца. Более того, удаление супрахиазматического ядра — главных часов организма — также имело профилактический эффект: гипертрофия миокарда у золотистых хомячков после операции не развивалась. В чем же причина такого чудесного исцеления?
Полученные результаты свидетельствуют о том, что не столько повреждение периферических часов, сколько утрата синхронизации между центральными и периферическими задатчиками ритма приводит к возникновению сердечно-сосудистой патологии. У мутантных хомячков произошла нестыковка 22-часового периода периферических часов и 24-часового периода центральных часов. Когда центральному хронометру через изменения внешних условий (свет/темнота) навязали ритм в 22 часа, то он синхронизировался с периферическими часиками, и сердечная патология не развилась. А когда супрахиазмальное ядро удалили, то периферическим часам снова ничто не мешало свободно реализовывать свой собственный ритм, и сердечко хомяка опять же было спасено.
С другой стороны, и сама болезнь способна нарушить слаженность внутренних биоритмов. Например, во время острого инфаркта миокарда в поврежденных клетках происходит сдвиг фаз циркадианных часов по отношению к здоровым тканям. Эта потеря синхронизации очень опасна и может вызвать угрожающие жизни приступы аритмии.
Восстановление слаженности ритмов клеток сердца с естественными циклами остальных органов и тканей и с циклическими сменами условий окружающей среды может стать многообещающей стратегией в борьбе с сердечно-сосудистыми заболеваниями. Но для реализации этого направления необходимы очень глубокие знания о закономерностях функционирования биоритмов. Интересно, что даже у здоровых людей циркадианный ритм клеток внутренней оболочки вен варьирует в зависимости от их анатомического положения. Необходимы дальнейшие исследования, чтобы как можно точнее идентифицировать все цайтгеберы в организме, и использовать полученные знания для починки наших встроенных хронометров в случае сбоя.
Суточная вариабельность сердечно-сосудистых показателей
Еще один очень важный момент заключается в том, что в течение суток чувствительность сердца к стрессу, эмоциональным и физическим нагрузкам различна. Также меняются во времени и сами показатели сердечно-сосудистой функции: артериальное давление, скорость кровотока, частота сердечных сокращений и другие. Непрерывная запись электрокардиограммы в течение 24 часов у людей в состоянии покоя показывает, что частота сердечных сокращений у человека постоянно варьирует: она достигает минимума на пятом-шестом часу сна и в это время составляет 48–50 ударов в минуту. Максимума она достигает вечером, примерно в 18 часов, а затем снова постепенно начинает снижаться.
Все эти явления возможны благодаря сложным молекулярным механизмам собственных периферических часов в сердечно-сосудистой системе. Около 10% генов, экспрессирующихся в клетках сердца, имеют суточный ритм экспрессии. В настоящее время проводится активный поиск факторов, влияющих на работу сердца и обладающих суточной ритмичностью. Молекулярные часы уже обнаружены в мышечных клетках сердца, в клетках внутренней выстилки сосудов (в эндотелии) и в мышечных клетках сосудов.
Молекулярные часы в мышечных клетках сердца
Недавно ученые опубликовали в журнале Nature сообщение о том, что белок Klf 15 (kruppel-like factor), контролирующий в организме процессы формирования тканей, обмена жиров и воспаления, способен влиять и на суточные ритмы сердца. Концентрация этого белка варьирует в зависимости от стадии цикла «сон—бодрствование». Исследователями были выведены линии мышей с двумя вариантами мутаций в гене, кодирующем Klf 15, которые приводили к тому, что уровень фактора в плазме крови был либо чрезмерно повышен, либо белок отсутствовал вовсе. И в том, и в другом случае мышки страдали от угрожающих жизни сердечных аритмий [7].
При более глубоком изучении оказалось, что Klf 15 — это только первая ступень в сложном молекулярном каскаде, потому что он контролирует другой белок — KСhIP 2 (Kv channel-interacting protein) — фактор, взаимодействующий с калиевыми каналами в мышечных клетках сердца. Изменения концентрации KChIP 2 приводят к электрической нестабильности тканей сердца и, как следствие, к нарушениям сердечного ритма; при этом ген этого фактора имеет суточный ритм экспрессии.
Суточный ритм экспрессии имеют и сами гены калиевых каналов мышечных клеток сердца Kv1.5 и Kv4.2. Интересно, что экспрессия Kv1.5 увеличивается в темное время суток, тогда как матричную РНК белка Kv4.2 в большей концентрации обнаруживают в светлый период. Нарушения ритма в любом звене этой сложной системы могут быть связаны с суточным временем возникновения приступов аритмии.
Синхронизация молекулярных часов мышечных клеток сердца с обменом липидов
Мы уже говорили о том, как важна синхронизация ритмов сердца с циклами других физиологических систем организма. Не менее важно отметить, что некоторые внутренние циклы способны навязывать свой ритм сердечным часам. Одним из таких циклов-задатчиков является суточный ритм циркуляции жирных кислот и уровня липидов, жестко связанный с циркадианным. Жирные кислоты — преимущественное «сердечное топливо»: они на 70% утилизируются сердцем. При избытке жирных кислот сократительная функция сердца подавляется, и сердце отвечает на эти изменения внутренней среды активацией как оксидативного (митохондриального), так и неоксидативного метаболизма. Таким образом сердце уменьшает клеточную токсичность, вызванную нагрузкой жирными кислотами. И этот процесс также связан с суточными ритмами экспрессии генов.
Американская исследовательница Молли Брэй исследовала гены циркадианных часов с помощью метода микрочипов ДНК. Ей удалось выявить 548 генов, регулирующих часы в кардиомиоцитах предсердия, и 176 генов, связанных с циркадианным ритмом мышечных клеток желудочка сердца. Среди них были гены, вовлеченные в липогенез, и белки, связывающие липиды; все они демонстрировали суточную экспрессию [8].
Периферические часы в клетках эндотелия
Несколько групп ученых продемонстрировали роль часовых генов в функции эндотелия — ткани, выстилающей внутреннюю поверхность кровеносных сосудов и сердца. Они выяснили, что у мышей с мутацией в часовом гене Per 2 не расслабляются сосуды в ответ на воздействие главного релаксирующего нейромедитора — ацетилхолина. Кроме этого очень неприятного нарушения функции, в крови мышек выявляется очень высокая концентрация веществ, стимулирующих сжатие сосудов, что чревато возникновением артериальной гипертонии [9].
Но на этом проблемы со здоровьем у несчастных мышек не заканчивались. Исследователь Чао Ванг показал, что если в клетках эндотелия есть мутация гена Per 2, то кровеносные сосуды быстро стареют, плохо восстанавливаются после повреждений, а у самих грызунов сильно уменьшается продолжительность жизни [10].
Периферические часы в мышечных клетках сосудов
Клетки гладкой мускулатуры кровеносных сосудов — миоциты — также имеют собственные периферические часы. Такишиге Куньеда исследовал циркадианную систему в миоцитах стареющих сосудов. Он обнаружил, что в этих клетках потеря циркадной ритмичности связана с укорочением теломер. Введение теломераз предотвращало проблемы с экспрессией часовых генов. Эти исследования показывают, что регуляция теломеразами может стать одним из способов терапии нарушений циркадных ритмов, связанных с возрастом [11].
Заключение
Таким образом, изучение биоритмов, особенно с позиции их синхронизации с циклами внутренней и внешней среды, поможет пролить свет не только на причины сердечно-сосудистой патологии, но и на причины старения и низкой продолжительности жизни.
Жизнь современного человека наполнена событиями, которые не подчиняются естественным циклам природы: мы можем работать в ночную смену или регулярно не спать по ночам, засиживаясь за телевизором, компьютером или чтением книг, у нас есть возможность за один день пересечь сразу несколько часовых поясов. Только все ли из нас задумывались, какие серьезные физиологические перестройки происходят в это время в нашем организме? В статье мы рассмотрели несколько примеров работы внутренних молекулярных часов, связанных с функционированием сердца, и увидели, что внутренние и внешние ритмы взаимосвязаны очень тесно, и нарушение временнóй слаженности в одной системе может повлечь за собой сбои в другой. Исследования в этой области продолжаются и, возможно, когда-нибудь ученые откроют волшебное средство, приняв которое, мы мгновенно синхронизируем работу всех внутренних органов, замедлим старение и будем чувствовать себя бодрыми и веселыми независимо от времени суток. Но пока это средство остается в мечтах, мы должны понимать, что сами можем организовать свою жизнь так, чтобы в наших молекулярных часах было как можно меньше сбоев. Соблюдение регулярности в режимах приема пищи, сна и бодрствования, физической активности, полноценный ночной сон, осторожное отношение к перелетам с пересечением часовых поясов — все это может стать той самой волшебной пилюлей, которая починит молекулярные часы в нашем сердце.