hadoop mapreduce что это

Hadoop mapreduce что это

MapReduce – это модель распределённых вычислений от компании Google, используемая в технологиях Big Data для параллельных вычислений над очень большими (до нескольких петабайт) наборами данных в компьютерных кластерах, и фреймворк для вычисления распределенных задач на узлах (node) кластера [1].

Назначение и области применения

MapReduce можно по праву назвать главной технологией Big Data, т.к. она изначально ориентирована на параллельные вычисления в распределенных кластерах. Суть MapReduce состоит в разделении информационного массива на части, параллельной обработки каждой части на отдельном узле и финального объединения всех результатов.

Программы, использующие MapReduce, автоматически распараллеливаются и исполняются на распределенных узлах кластера, при этом исполнительная система сама заботится о деталях реализации (разбиение входных данных на части, разделение задач по узлам кластера, обработка сбоев и сообщение между распределенными компьютерами). Благодаря этому программисты могут легко и эффективно использовать ресурсы распределённых Big Data систем.

Технология практически универсальна: она может использоваться для индексации веб-контента, подсчета слов в большом файле, счётчиков частоты обращений к заданному адресу, вычисления объём всех веб-страниц с каждого URL-адреса конкретного хост-узла, создания списка всех адресов с необходимыми данными и прочих задач обработки огромных массивов распределенной информации. Также к областям применения MapReduce относится распределённый поиск и сортировка данных, обращение графа веб-ссылок, обработка статистики логов сети, построение инвертированных индексов, кластеризация документов, машинное обучение и статистический машинный перевод. Также MapReduce адаптирована под многопроцессорные системы, добровольные вычислительные, динамические облачные и мобильные среды [2].

История развития главной технологии Big Data

Авторами этой вычислительной модели считаются сотрудники Google Джеффри Дин (Jeffrey Dean) и Санджай Гемават (Sanjay Ghemawat), взявшие за основу две процедуры функционального программирования: map, применяющая нужную функцию к каждому элементу списка, и reduce, объединяющая результаты работы map [3]. В процессе вычисления множество входных пар ключ/значение преобразуется в множество выходных пар ключ/значение [4].

Изначально название MapReduce было запатентовано корпорацией Google, но по мере развития технологий Big Data стало общим понятием мира больших данных. Сегодня множество различных коммерческих, так и свободных продуктов, использующих эту модель распределенных вычислений: Apache Hadoop, Apache CouchDB, MongoDB, MySpace Qizmt и прочие Big Data фреймворки и библиотеки, написанные на разных языках программирования [2]. Среди других наиболее известных реализаций MapReduce стоит отметить следующие [5]:

Как устроен MapReduce: принцип работы

Прежде всего, еще раз поясним смысл основополагающих функций вычислительной модели [2]:

Для обработки данных в соответствии с вычислительной моделью MapReduce следует определить обе эти функции, указать имена входных и выходных файлов, а также параметры обработки.

Сама вычислительная модель состоит из 3-хшаговой комбинации вышеприведенных функций [2]:

О преимуществах и недостатках вычислительной модели MapReduce, а также возможных альтернативах читайте в нашей отдельной статье.

Источник

MapReduce 2.0. Какой он современный цифровой слон?

hadoop mapreduce что это

Если ты ИТшник, то нельзя просто так взять и выйти на работу 2-го января: пересмотреть 3-ий сезон битвы экстрасенсов или запись программы «Гордон» на НТВ (дело умственных способностей вкуса).
Нельзя потому, что у других сотрудников обязательно будут для тебя подарки: у секретарши закончился кофе, у МП — закончились дедлайны, а у администратора баз данных — амнезия память.
Оказалось, что инженеры из команды Hadoop тоже любят побаловать друг друга новогодними сюрпризами.

2 января. Упуская подробное описание эмоционально-психологического состояния лиц, участвующих в описанных ниже событиях, сразу перейду к факту: поставлен таск MAPREDUCE-279 «Map-Reduce 2.0». Оставив шутки про число, обращу внимание, что до 1-ой стабильной версии Hadoop остается чуть менее 4 лет.

За это время проект Hadoop пройдет эволюцию из маленького инновационного снежка, запущенного в 2005, в большой снежный com ком, надвигающийся на ИТ, в 2012.
Ниже мы предпримем попытку разобраться, какое же значение январский таск MAPREDUCE-279 играл (и, уверен, еще сыграет в 2013) в эволюции платформы Hadoop.

…release 1.0.0 available. After six years of gestation, Hadoop reaches 1.0.0!

и ссылку стабильную версию Hadoop v1.0.

Hadoop 2.0.0-alpha стал доступен для скачивания в конце мая. В мае же в печать вышла книга «Hadoop: The Definitive Guide, Third Edition» (автор Tom White), где довольно значительный объем отводится YARN. В начале июня Tom White выступил с презентацией «MapReduce 2.0» (видео) на Chicago Hadoop User Group. В это же месяце Cloudera с анонсировала поддержку Hadoop 2.0.0 Alpha в своем продукте CDH4. Немногим позже о поддержке Hadoop 2.0 в своих дистрибутивах заявила и компания Hortonworks.

17 сентября на сайте Apache Software Foundation было опубликовано, что YARN and MapReduce v2 доступны в Hadoop 0.23.3.

Ниже будут рассмотрены походы к распределенным вычислениям в классическом Hadoop MapReduce и новой архитектуре, описаны приемы и компоненты, реализующие концепции новой модели, а также проведено сравнение классической и 2.0 архитектур.

1. Hadoop MapReduce Classic

Hadoop – популярная программная платформа (software framework) построения распределенных приложений для массово-параллельной обработки (massive parallel processing, MPP) данных.

4K вычислительных узлов;

2. Hadoop MapReduce Next

Основные изменения коснулись компонента выполнения распределенных вычислений Hadoop MapReduce.

Классический Hadoop MapReduce представлял собой один процесс JobTracker и произвольное количество процессов TaskTracker.

ResourceManager

ResourceManager (RM) – глобальный менеджер ресурсов, чьей задачей является распределение ресурсов, затребованных приложениями и наблюдение за вычислительными узлами, на которых эти приложения выполняются.

Ресурсы у RM запрашиваются для абстрактного понятия Container, о котором речь еще пойдет и которому можно задать такие параметры как требуемое процессорное время, объем оперативной памяти, необходимая пропускная способность сети. На декабрь 2012 года поддерживается только параметр «объем RAM».

Введение RM позволяет относиться к узлам кластера как к вычислительным ресурсам, что качественно повышает утилизацию ресурсов кластера.

ApplicationMaster

ApplicationMaster (AM) – компонент, ответственный за планирование жизненного цикла, координацию и отслеживание статуса выполнения распределенного приложения. Каждое приложение имеет свой экземпляр ApplicationMaster.

На этом уровне как раз стоит рассмотреть YARN.

YARN (Yet Another Resource Negotiator) – это программный фреймворк выполнения распределенных приложений (каким экземпляр ApplicationMaster и является). YARN предоставляет компоненты и API, необходимые для разработки распределенных приложений различных типов. Сам фреймворк берет на себя ответственность по распределению ресурсов в ответ на запросы ресурсов от выполняемых приложений и ответственность за отслеживанием статуса выполнения приложений.

Модель YARN более общая (generic), чем модель, реализованная в классическом Hadoop MapReduce.

Благодаря YARN на Hadoop-кластере возможно запускать не только «map/reduce»-приложения, но и распределенные приложения, созданные с использованием: Open MPI, Spark, Apache HAMA, Apache Giraph, etc. Есть возможность реализовать и другие распределенные алгоритмы (вот она сила ООП!). Подробные инструкции описаны в Apache Wiki.

В свою очередь, MapReduce 2.0 (или MR2, или MRv2) – это фреймворк выполнения распределенных вычислений в рамках программной модели map/reduce, «лежащий» над уровнем YARN.

Разделение ответственности по управлению ресурсами и планированию/координации жизненного цикла приложения между компонентами ResourceManager и ApplicationMaster придали платформе Hadoop более распределенный характер. Что, в свою очередь, положительно сказалось на масштабируемости платформы.

NodeManager

Протоколы взаимодействия

3. Hadoop MapReduce. Vis-à-vis

В части 1 «Hadoop MapReduce Classic» было дано введение в платформу Hadoop и описаны основные ограничения платформы. В части 2 «Hadoop MapReduce Next» были описаны концепции и компоненты, введенные в новую версию фреймворка распределенных вычислений Hadoop MapReduce.

Обсудим, как концепции YARN, MR2 и компоненты, реализующие эти концепции, изменили архитектуру распределенного вычисления на платформе Hadoop, а также как эти изменения помогли (или нет) обойти с существующие ограничения платформы.

Архитектура

В Hadoop MapReduce 1.0 кластер имеет единственный узел JobTracker, который занимается распределением задач по многочисленным узлам TaskTracker, непосредственно выполняющим задачи.

hadoop mapreduce что это

В новой архитектуре Hadoop MapReduce ответственность по управлению ресурсами и планированию/координации за жизненным циклом выполнения приложений разделены между ResourceManager (per-cluster) и ApplicationMaster (per-application), соответственно.

Каждый вычислительный узел разделен на произвольное количество контейнеров Container, содержащих предопределенное количество ресурсов: CPU, RAM и т.д. Наблюдение за контейнерами ведет NodeManager (per-node).

hadoop mapreduce что это

Ниже представлена иллюстрация взаимодействия отдельных компонент Hadoop MapReduce в классическом варианте архитектуры

hadoop mapreduce что это

и YARN-подобной архитектуру (новые типы коммуникаций между компонентами выделены жирным).

hadoop mapreduce что это

Далее рассмотрим, как новая архитектура Hadoop MapReduce повлияла на такие аспекты платформы как доступность, масштабируемость, утилизация ресурсов.

Доступность

В Hadoop MapReduce 1.0 сбой JobTracker приводит к необходимости перезапуска JobTracker с чтением состояния из специальных журналов, что, в конечном итоге, приводит к простою кластера.

В новой версии решения по доступности хоть и не поднялись на качественно новый уровень, но все же дела обстоят не хуже. Hadoop MapReduce 2.0 задача высокой доступности решается следующим способом: сохраняется состояние компонентов ResourceManager и ApplicationMaster и обеспечивается система автоматического перезапуска перечисленных компонентов при сбое с подгрузкой последнего успешно сохраненного состояния.

Для ResourceManager сохранением состояния занимается Apache ZooKeeper. И при сбое менеджера ресурсов, создается новый процесс RM с состоянием, которое было до сбоя. Таким образом, последствия от сбоя RM сводятся к тому, что перезапустятся все запланированные и запущенные приложения.

Для ApplicationMaster используется собственный механизм checkpoint’ов. В процессе работы AM сохраняет свое состояние в HDFS. Если AM становится недоступным, то RM перезапускает его с состоянием из snapshot’а.

Масштабируемость

Разработчики, работающие с Hadoop MapReduce 1.0, неоднократно указывали, что предел масштабируемости Hadoop-кластера лежит в районе 4K машин. Основная причина этого ограничения — узел JobTracker довольно значительное количество своих ресурсов тратит на задачи, связанные с жизненным циклом приложения. Последние можно отнести к задачам специфическим для конкретного приложения, а не для кластера в целом.

Разделение ответственности за задачи, относящиеся к разным уровням, между ResourceManager и ApplicationMaster стало, пожалуй, главным ноухау Hadoop MapReduce 2.0.

Планируется, что Hadoop MapReduce 2.0 может работать на кластерах до 10K+ вычислительных узлов, что является существенным прогрессом, в сравнении с классической версией Hadoop MapReduce.

Утилизация ресурсов

Невысокая утилизация ресурсов вследствие жесткого деления ресурсов кластера на map- и reduce-слоты нередко также является объектом критики классического Hadoop MapReduce. На смену концепции слотов в MapReduce 1.0 пришла концепция универсальных контейнеров – набора взаимозаменяемых изолированных ресурсов.

Введения понятия «Container» в Hadoop MapReduce 2.0, по сути, добавил платформе Hadoop еще одно свойство – мультитенантность. Отношение к узлам кластера как к вычислительным ресурсам позволит избавиться от негативного влияния слотов на утилизацию ресурсов.

Связанность

Одной из архитектурных проблем Hadoop MapReduce 1.0 было сильная связанность 2-ух, по сути, не взаимозависимых систем: фреймворка распределенных вычислений и клиентских библиотек, реализующих распределенный алгоритм.

Это связанность стала причиной невозможности запуска на Hadoop-кластере MPI или других, альтернативных map/reduce, распределенных алгоритмов.

В новой архитектуре был выделен фреймворк распределенных вычислений YARN и фреймворк вычислений в рамках программной модели map/reduce, базирующийся на основе YARN – MR2.

MR2 является application-specific фреймворком, представленным ApplicationMaster, в то время как YARN «представлен» компонентами ResourceManager и NodeManager и полностью независим от специфики распределенного алгоритма.

За кадром

Целостной картины не будет, если не упомянуть 2 аспекта:
1. В статье рассматривался только фреймворк распределенных вычислений.
За рамками статьи остались изменения, коснувшиеся хранилища данных. Наиболее заметные из них — высокая доступность узла имен HDFS и федерации узлов имен HDFS.
2. Описанное выше будет реализовано только в Hadoop v2.0 (на время написания статьи доступен alfa-версия). Так YARN и MR2 доступны уже в Hadoop v0.23, но без поддержки высокой доступности NameNode.

Отдельно отмечу, что на июньской конференции Chicago HUG 2012, о которой я упомянул во введении, Tom White говорил, что в Hadoop 2.0 Alpha еще есть работы, связанные и с производительность, и с безопасностью, и с ResourceManager.

Заключение

Проект Hadoop в 2010 приятно удивлял идеями, в 2011 – скоростью распространения, в 2012 поразил масштабом изменений.

Не буду тратить Ваше время на «традиционное» краткое изложение того, что изменили YARN и MR2 в платформе Hadoop. Это без сомнения качественный скачок платформы.

Сейчас Hadoop выглядит как дефакто отраслевой стандарт в задачах, связанных с Big Data. Будущий релиз версии 2.0 даст разработчикам открытый, отказоустойчивый, великолепно масштабируемый, расширяемый инструмент массово-параллельной обработки, не «зацикленный» исключительно на программной модели map/reduce.

Звучит невероятно. Еще невероятнее, что это совсем недалекая реальность. Остается только один ньанс — быть этой реальности готовым.

Список источников

[1] Apache Hadoop NextGen MapReduce (YARN). Apache Software Foundation, 2011.
[2] Arun C Murthy. The Next Generation of Apache Hadoop MapReduce. Yahoo, 2011.
[3] Ahmed Radwan. MapReduce 2.0 in Hadoop 0.23. Cloudera, 2012.
[4] Tom White. Hadoop: The Definitive Guide, 3rd Edition. O’Reilly Media / Yahoo Press, 2012.
[5] Apache Hadoop Main 2.0.2-alpha API. Apache Software Foundation, 2012.

Источник

Что такое Apache Hadoop в Azure HDInsight?

Первоначально технология Apache Hadoop была платформой с открытым кодом для распределенной обработки и анализа наборов больших данных в кластерах. Экосистема Hadoop состоит из взаимосвязанного программного обеспечения и служебных программ, таких как Apache Hive, Apache HBase, Spark, Kafka и т. д.

Azure HDInsight — это полностью управляемая комплексная облачная служба аналитики с открытым кодом, предназначенная для предприятий. Тип кластера Apache Hadoop в Azure HDInsight позволяет использовать распределенную файловую систему Apache Hadoop (HDFS) и управление ресурсами Apache Hadoop YARN, а также простую модель программирования MapReduce для параллельной обработки и анализа пакетных данных. Кластеры Hadoop в HDInsight совместимы с Хранилищем BLOB-объектов Azure, Azure Data Lake Storage 1-го поколения или Azure Data Lake Storage 2-го поколения.

Просмотреть доступные компоненты стека технологии Hadoop в HDInsight можно в статье Что представляют собой компоненты и версии Hadoop, доступные в HDInsight? Дополнительные сведения о Hadoop в HDInsight см. на странице возможностей HDInsight в Azure.

Что такое MapReduce

Apache Hadoop MapReduce — это программная платформа для создания заданий, обрабатывающих большие объемы данных. Входные данные разбиваются на независимые блоки, которые затем обрабатываются параллельно на узлах кластера. Задание MapReduce состоит из двух функций.

Mapper(Модуль сопоставления) — принимает входные данные, анализирует их (обычно с помощью фильтрации и сортировки) и передает кортежи (пары «ключ-значение»).

Reducer(Редуктор) — принимает кортежи, сформированные в модуле сопоставления, и выполняет операцию сводки, которая создает результат меньшего размера, объединяющий данные модуля сопоставления

На следующей диаграмме показан пример задания MapReduce, которое выполняет простую операцию подсчета слов:

hadoop mapreduce что это

Выходные данные этого задания представляют собой частоту использования каждого слова в тексте.

Задание MapReduce может быть реализовано на различных языках. Java — это наиболее распространенная реализация, которая используется в данном документе для примера.

Языки разработки

Языки или платформы на основе Java или виртуальной машины Java можно запускать непосредственно как задание MapReduce. В качестве примера в этом документе приведено приложение MapReduce на языке Java. Прочие языки и платформы, например C# или Python, или изолированные исполняемые файлы должны использовать потоковую передачу Hadoop.

Потоковая передача Hadoop взаимодействует с модулями сопоставления и редукции через потоки STDIN и STDOUT. Модули сопоставления и редукции построчно считывают данные из потока STDIN и записывают выходные данные в поток STDOUT. Каждая строка, которая читается или генерируется модулем сопоставления или редукции, должна быть в формате пар «ключ-значение», разделенных знаком табуляции.

Дополнительные сведения см. в документации по потоковой передаче Hadoop.

Примеры использования потоковой передачи Hadoop с HDInsight см. в следующих документах:

Источник

Поговорим за Hadoop

hadoop mapreduce что это

Введение

Как человеку с не очень устойчивой психикой, мне достаточно одного взгляда на картинку, подобную этой, для начала панической атаки. Но я решил, что страдать буду только сам. Цель статьи — сделать так, чтобы Hadoop выглядел не таким страшным.

Что будет в этой статье:
Чего не будет в этой статье:
Что такое Hadoop и зачем он нужен

Hadoop не так уж сложен, ядро состоит из файловой системы HDFS и MapReduce фреймворка для обработки данных из этой файловой системы.

Если смотреть на вопрос «зачем нам нужен Hadoop?» с точки зрения использования в крупном энтерпрайзе, то ответов достаточно много, причем варьируются они от «сильно за» до «очень против». Я рекомендую просмотреть статью ThoughtWorks.

Если смотреть на этот же вопрос уже с технической точки зрения — для каких задач нам есть смысл использовать Hadoop — тут тоже не все так просто. В мануалах в первую очередь разбираются два основных примера: word count и анализ логов. Ну хорошо, а если у меня не word count и не анализ логов?

Хорошо бы еще и определить ответ как-нибудь просто. Например, SQL — нужно использовать, если у вас есть очень много структурированных данных и вам очень хочется с данными поговорить. Задать как можно больше вопросов заранее неизвестной природы и формата.

Длинный ответ —просмотреть какое-то количество существующих решений и собрать неявным образом в подкорке условия, для которых нужен Hadoop. Можно ковыряться в блогах, могу еще посоветовать прочитать книгу Mahmoud Parsian «Data Algorithms: Recipes for Scaling up with Hadoop and Spark».

Попробую ответить короче. Hadoop следует использовать, если:

Архитектура HDFS и типичный Hadoop кластер

HDFS подобна другим традиционным файловым системам: файлы хранятся в виде блоков, существует маппинг между блоками и именами файлов, поддерживается древовидная структура, поддерживается модель доступа к файлам основанная на правах и т. п.

Hadoop-кластер состоит из нод трех типов: NameNode, Secondary NameNode, Datanode.

Namenode — мозг системы. Как правило, одна нода на кластер (больше в случае Namenode Federation, но мы этот случай оставляем за бортом). Хранит в себе все метаданные системы — непосредственно маппинг между файлами и блоками. Если нода 1 то она же и является Single Point of Failure. Эта проблема решена во второй версии Hadoop с помощью Namenode Federation.

Secondary NameNode — 1 нода на кластер. Принято говорить, что «Secondary NameNode» — это одно из самых неудачных названий за всю историю программ. Действительно, Secondary NameNode не является репликой NameNode. Состояние файловой системы хранится непосредственно в файле fsimage и в лог файле edits, содержащим последние изменения файловой системы (похоже на лог транзакций в мире РСУБД). Работа Secondary NameNode заключается в периодическом мерже fsimage и edits — Secondary NameNode поддерживает размер edits в разумных пределах. Secondary NameNode необходима для быстрого ручного восстанавления NameNode в случае выхода NameNode из строя.

В реальном кластере NameNode и Secondary NameNode — отдельные сервера, требовательные к памяти и к жесткому диску. А заявленное “commodity hardware” — уже случай DataNode.

DataNode — Таких нод в кластере очень много. Они хранят непосредственно блоки файлов. Нода регулярно отправляет NameNode свой статус (показывает, что еще жива) и ежечасно — репорт, информацию обо всех хранимых на этой ноде блоках. Это необходимо для поддержания нужного уровня репликации.

Посмотрим, как происходит запись данных в HDFS:
hadoop mapreduce что это

Клиент продолжает записывать блоки, если сумеет записать успешно блок хотя бы на одну ноду, т. е. репликация будет работать по хорошо известному принципу «eventual», в дальнейшем NameNode обязуется компенсировать и таки достичь желаемого уровня репликации.
Завершая обзор HDFS и кластера, обратим внимание на еще одну замечательную особенность Hadoop’а — rack awareness. Кластер можно сконфигурировать так, чтобы NameNode имел представление, какие ноды на каких rack’ах находятся, тем самым обеспечив лучшую защиту от сбоев.

MapReduce

Единица работы job — набор map (параллельная обработка данных) и reduce (объединение выводов из map) задач. Map-задачи выполняют mapper’ы, reduce — reducer’ы. Job состоит минимум из одного mapper’а, reducer’ы опциональны. Здесь разобран вопрос разбиения задачи на map’ы и reduce’ы. Если слова «map» и «reduce» вам совсем непонятны, можно посмотреть классическую статью на эту тему.

Модель MapReduce

hadoop mapreduce что это

Посмотрим на архитектуру MapReduce 1. Для начала расширим представление о hadoop-кластере, добавив в кластер два новых элемента — JobTracker и TaskTracker. JobTracker непосредственно запросы от клиентов и управляет map/reduce тасками на TaskTracker’ах. JobTracker и NameNode разносится на разные машины, тогда как DataNode и TaskTracker находятся на одной машине.

Взаимодействие клиента и кластера выглядит следующим образом:

hadoop mapreduce что это

1. Клиент отправляет job на JobTracker. Job представляет из себя jar-файл.
2. JobTracker ищет TaskTracker’ы с учетом локальности данных, т.е. предпочитая те, которые уже хранят данные из HDFS. JobTracker назначает map и reduce задачи TaskTracker’ам
3. TaskTracker’ы отправляют отчет о выполнении работы JobTracker’у.

Неудачное выполнение задачи — ожидаемое поведение, провалившиеся таски автоматически перезапускаются на других машинах.
В Map/Reduce 2 (Apache YARN) больше не используется терминология «JobTracker/TaskTracker». JobTracker разделен на ResourceManager — управление ресурсами и Application Master — управление приложениями (одним из которых и является непосредственно MapReduce). MapReduce v2 использует новое API

Настройка окружения

На рынке существуют несколько разных дистрибутивов Hadoop: Cloudera, HortonWorks, MapR — в порядке популярности. Однако мы заострять внимание на выборе конкретного дистрибутива не будем. Подробный анализ дистрибутивов можно найти здесь.

Есть два способа безболезненно и с минимальными трудозатратами попробовать Hadoop:

1. Amazon Cluster — полноценный кластер, но этот вариант будет стоить денег.

2. Скачать виртуальную машину (мануал №1 или мануал №2). В этом случае минусом будет, что все сервера кластера крутятся на одной машине.

Перейдем к способам болезненным. Hadoop первой версии в Windows потребует установки Cygwin. Плюсом здесь будет отличная интеграция со средами разработки (IntellijIDEA и Eclipse). Подробнее в этом замечательном мануале.

Начиная со второй версии, Hadoop поддерживает и серверные редакции Windows. Однако я бы не советовал пытаться использовать Hadoop и Windows не только в production’e, но и вообще где-то за пределами компьютера разработчика, хотя для этого и существуют специальные дистрибутивы. Windows 7 и 8 в настоящий момент вендоры не поддерживают, однако люди, которые любят вызов, могут попробовать это сделать руками.

Отмечу еще, что для фанатов Spring существует фреймворк Spring for Apache Hadoop.

Мы пойдем путем простым и установим Hadoop на виртуальную машину. Для начала скачаем дистрибутив CDH-5.1 для виртуальной машины (VMWare или VirtualBox). Размер дистрибутива порядка 3,5 гб. Cкачали, распаковали, загрузили в VM и на этом все. У нас все есть. Самое время написать всеми любимый WordCount!

Конкретный пример

Нам понадобится сэмпл данных. Я предлагаю скачать любой словарь для bruteforce’а паролей. Мой файл будет называться john.txt.
Теперь открываем Eclipse, и у нас уже есть пресозданный проект training. Проект уже содержитя все необходимые библиотеки для разработки. Давайте выкинем весь заботливо положенный ребятами из Clouder код и скопипастим следующее:

Получим примерно такой результат:

hadoop mapreduce что это

hadoop mapreduce что это

hadoop mapreduce что это

Нажимаем Apply, а затем Run. Работа успешно выполнится:

hadoop mapreduce что это

А где же результаты? Для этого обновляем проект в Eclipse (кнопкой F5):

hadoop mapreduce что это

В папке output можно увидеть два файла: _SUCCESS, который говорит, что работа была выполнена успешно, и part-00000 непосредственно с результатами.
Этот код, разумеется, можно дебажить и т. п. Завершим же разговор обзором unit-тестов. Собственно, пока для написания unit-тестов в Hadoop есть только фреймворк MRUnit (https://mrunit.apache.org/), за Hadoop он опаздывает: сейчас поддерживаются версии вплоть до 2.3.0, хотя последняя стабильная версия Hadoop — 2.5.0

Блиц-обзор экосистемы: Hive, Pig, Oozie, Sqoop, Flume

В двух словах и обо всем.

Hive & Pig. В большинстве случаев писать Map/Reduce job’ы на чистой Java — слишком трудоемкое и неподъемное занятие, имеющее смысл, как правило, лишь чтобы вытащить всю возможную производительность. Hive и Pig — два инструмента на этот случай. Hive любят в Facebook, Pig любят Yahoo. У Hive — SQL-подобный синтаксис (сходства и отличия с SQL-92). В лагерь Big Data перешло много людей с опытом в бизнес-анализе, а также DBA — для них Hive часто инструмент выбора. Pig фокусируется на ETL.

Oozie — workflow-движок для jobs. Позволяет компоновать jobs на разных платформах: Java, Hive, Pig и т. д.

Наконец, фреймворки, обеспечивающие непосредственно ввод данных в систему. Совсем коротко. Sqoop — интеграция со структурированными данными (РСУБД), Flume — с неструктурированными.

Обзор литературы и видеокурсов

Литературы по Hadoop пока не так уж много. Что касается второй версии, мне попадалась только одна книга, которая концентрировалась бы именно на ней — Hadoop 2 Essentials: An End-to-End Approach. К сожалению, книгу никак не получить в электронном формате, и ознакомиться с ней не получилось.

Я не рассматриваю литературу по отдельным компонентам экосистемы — Hive, Pig, Sqoop — потому что она несколько устарела, а главное, такие книги вряд ли кто-то будет читать от корки до корки, скорее, они будут использоваться как reference guide. Да и то всегда можно обойдись документацией.

Hadoop: The Definitive Guide — книга в топе Амазона и имеет много позитивных отзывов. Материал устаревший: 2012 года и описывает Hadoop 1. В плюс идет много положительных ревью и достаточно широкое покрытие всей экосистемы.

Lublinskiy B. Professional Hadoop Solution — книга, из которой взято много материала для этой статьи. Несколько сложновата, однако очень много реальных практических примеров —внимания уделено конкретным нюансам построения решений. Куда приятнее, чем просто читать описание фич продукта.

Sammer E. Hadoop Operations — около половины книги отведено описанию конфигурации Hadoop. Учитывая, что книга 2012 г., устареет очень скоро. Предназначена она в первую очередь, конечно же, для devOps. Но я придерживаюсь мнения, что невозможно понять и прочувствовать систему, если ее только разрабатывать и не эксплуатировать. Мне книга показалось полезной за счет того, что разобраны стандартные проблемы бэкапа, мониторинга и бенчмаркинга кластера.

Parsian M. «Data Algorithms: Recipes for Scaling up with Hadoop and Spark» — основной упор идет на дизайн Map-Reduce-приложений. Сильный уклон в научную сторону. Полезно для всестороннего и глубокого понимания и применения MapReduce.

Owens J. Hadoop Real World Solutions Cookbook — как и многие другие книги издательства Packt со словом “Cookbook” в заголовке, представляет собой техническую документацию, которую нарезали на вопросы и ответы. Это тоже не так просто. Попробуйте сами. Стоит прочитать для широкого обзора, ну, и использовать как справочник.

Стоит обратить внимание и на два видеокурса от O’Reilly.

Learning Hadoop — 8 часов. Показался слишком поверхностным. Но для меня некую ценность представили доп. материалы, потому что хочется поиграть с Hadoop, но нужны какие-то живые данные. И вот он — замечательный источник данных.

Building Hadoop Clusters — 2,5 часа. Как понятно из заголовка, здесь упор на построение кластеров на Амазоне. Мне курс очень понравился — коротко и ясно.
Надеюсь, что мой скромный вклад поможет тем, кто только начинает освоение Hadoop.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *