что делает рнк в биосинтезе белка
Роль РНК в биосинтезе белка
Автор работы: Пользователь скрыл имя, 26 Января 2014 в 08:28, реферат
Краткое описание
Мы рождаемся, взрослеем, у нас появляются дети и внуки. Мы ни одни живые существа на этой планете, вокруг нас ежечасно, ежесекундно происходит зарождение новой жизни. Этот процесс не прерывается никогда. Наши соседи по планете – это миллиарды живых существ: растения, животные, микроорганизмы, вирусы. Нас радует цветущий вишневый сад и шорох желтеющей, отмирающей листвы под ногами, умиротворяет выпрыгивающие из воды дельфины и прыгающая белка – летяга. Все мы когда-либо болели гриппом, краснухой и эти болезни вызваны нахождением в нашем организме болезнетворных микробов и вирусов, а это тоже живые организмы. Как редко мы задумываемся, откуда такое разнообразие жизни, и ее форм, так не похожих друг на друга! А между тем все живые организмы состоят из одних и тех же химических элементов, объединенных в макромолекулы, такие как белки. Только у различных живых существ белки различны по своей структуре
Содержание
Прикрепленные файлы: 1 файл
Нуклеин.doc
4. Роль РНК в биосинтезе белка
Генетическая информация о структуре специфических белков, закодированная в ДHK, переносится из ядра в цитоплазму с помощью молекул РНК. В цитоплазме осуществляется биосинтез белка на рибосомах. Образующиеся белки определяют признаки клетки, а вместе с тем целого организма. Так происходит экспрессия (проявление) генетической информации.
Непосредственное участие в биосинтезе белка принимают молекулы РНК трех видов: транспортная РНК (тРНК), рибосомная РНК (рРНК) и матричная, или информационная PНK (мРНК). Количество РНК в каждой клетке находится в прямой зависимости от количества вырабатываемого белка. Все виды РНК синтезируются непосредственно на ДНК, которая служит матрицей
Транспортная РНК (тРНК).
Важная роль в процессе использования наследственной информации клеткой принадлежит тРНК. Доставляя необходимые аминокислоты к месту сборки пептидных цепей, тРНК выполняет функцию посредника. Каждой аминокислоте соответствуют две или большее число специфических тРНК.
В результате комплементарного соединения оснований, которые находятся в разных участках полинуклеотидной цени тРНК, она приобретает структуру, напоминающую по форме лист клевера. В ней выделяют четыре главные части, выполняющие различные функции. Центральная антикодоновая ветвь содержит антикодон – специфический триплет нуклеотидов, который комплементарен соответствующему кодону мРНК и может образовывать с ним водородные связи.
На противоположной стороне располагается акцепторный стебель, который присоединяет специфическую для тРНК аминокислоту к последовательности ЦЦA, стоящей на 3’-конце.
Изучение кристаллов тРНК методом рентгеноструктурного анализа показало, что трехмерная структура этих молекул напоминает перевернутую латинскую букву L, на короткой ветви которой и располагается антикодон (Приложение 4).
Рибосомная РНК (рРНК) составляет более 80% всей РНК клетки. Она кодируется особыми генами, находящимися в нескольких хромосомах и расположенными в зоне ядрышка, называемой ядрышковым организатором. В клетках человека содержится около 100 копий гена рРНК, локализованных грушами на пяти хромосомах. С этого гена «списывается» первичный транскрипт, который разделяется на 3 молекулы: 28S, 18S и 5,8S рРНК. рРНК связывается с белковыми молекулами, образуя вместе с ними клеточные органеллы – рибосомы, которые находятся преимущественно в цитоплазме. На рибосомах протекает синтез белка.
Участки образуются благодаря взаимодействию обеих субчастиц рибосом. В каждый момент биосинтеза белка в центрах рибосомы помещаются два кодона мРНК, которые взаимодействуют с двумя соответствующими им тРНК.
Рибосомные субчастицы имеют замысловатую форму, обеспечивающую выполнение ими их функций. Они «пригнаны» друг к другу, но между ними остается щель. Через щель проходит «прочитанная» молекула мРНК, отсюда же выдвигается новосинтезированная полипептидная цепь (Приложение 5).
Существует четкое «разделение труда» между субчастицами рибосомы: малая субчастица отвечает за прием и декодирование генетической информации, то есть выполняет генетические функции, в то время как большая обеспечивает энзиматические реакции в процессе трансляции. Предполагают, что образование пептидной связи (реакция транспептидации) катализируется пептидилтрансферазным центром рибосомы, и основной вклад вносит рРНК.
Рибосомные субчастицы отделяются друг от друга после окончания синтеза полипептидной цепи.
Матричная РНК (мРНК).
Матричная (мРНК) или информационная (иРНК) составляет всего 3 – 5% всей содержащейся в клетке РНК. Она переносит генетическую информацию от ДНК к рибосомам, где служит матрицей для биосинтеза полипептидных цепей. В любой данный момент в клетке присутствует чрезвычайно сложная смесь сотен мРНК, каждая из которых кодирует одну или несколько полипептидных цепей. Большинство мРНК существует в клетке в течение короткого времени, так как распадаются, выполнив свою функцию.
Матричные РНК − это одноцепочечные молекулы caмой разной длины. Минимальная длина определяется размером полипептидной цепи, которую она кодирует. Например, для синтеза белка, состоящего из 100 аминокислотных остатков, требуется мРНК из 300 нуклеотидов, поскольку каждая аминокислота кодируется тройкой нуклеотидов (триплетом). Однако мРНК всегда несколько длиннее, так как содержит ряд дополнительных участков. Так, на 5’-конце имеется некодирующий «лидер» длиной от 25 до 150 оснований. мРНК прокариот обычно кодируют два или большее число полипептидов (их называют полигенными). Такие мРНК содержат межгенные области, или спейсеры, которые разделяют отдельные кодирующие участки и, видимо, помогают регулировать скорость транскрипции.
Эукариотические мРНК обычно являются моногенными. Другое отличие эукариотических мРНК − это наличие в них 5’-концевого “кэпа” (от англ. cap –“шапка”), представляющего собой остаток 7-метилгуанозина, присоединенного посредством трифосфатной связи. Кроме того, на своем 3’-конце они содержат “хвост” из 100-200 последовательно присоединенных остатков А (аденилата). Эти характерные участки присоединяются к первичному транскрипту эукариотической мРНК в ходе процессинга.
В моей работе я пыталась разобраться в строении и составе РНК и роли РНК в биосинтезе белка, и еще раз убедилась, что все нас окружающее – это результат соединения в различной последовательностью химических элементов. В процессе выполнения работы я все больше убеждалась, что невозможно познать и объяснить загадку происхождения жизни без знания органической химии. Неразрывно связана с химией и биология.
Почти полвека тому назад был открыт принцип структурной (молекулярной) организации генного вещества – дезоксирибонуклеиновой кислоты (ДНК). Структура ДНК дала ключ к механизму точного воспроизведения генного вещества. Так возникла новая наука – молекулярная биология. Была сформулирована так называемая центральная догма молекулярной биологии: ДНК – РНК – белок. Смысл ее состоит в том, что генетическая информация, записанная в ДНК, реализуется в виде белков, но не непосредственно, а через посредство родственного полимера – рибонуклеиновую кислоту (РНК), и этот путь от нуклеиновых кислот к белкам необратим. Таким образом, ДНК синтезируется на ДНК, обеспечивая собственное воспроизведение исходного генетического материала в поколениях; РНК синтезируется на ДНК, в результате чего происходит переписывание, или транскрипция, генетической информации в форму многочисленных копий РНК; молекулы РНК служат матрицами для синтеза белков – генетическая информация транслируется в форму полипептидных цепей. Итак, именно ДНК определяет наследственность организмов, то есть воспроизводящийся в поколениях набор белков и связанных с ними признаков. Биосинтез белка является центральным процессом живой материи, а нуклеиновые кислоты обеспечивают его, с одной стороны, программой, определяющей весь набор и специфику синтезируемых белков, а с другой – механизмом точного воспроизведения этой программы в поколениях. Следовательно, без РНК, как и ДНК невозможна жизнь на Земле.
Структуры, основные типы РНК, их роль в синтезе белков. Передача наследственной информации ДНК-РНК-белок. Обратная транскрипция.
Процесс биосинтеза включает ряд этапов – транскрипцию, сплайсинг и трансляцию.
Первый этап называется транскрипцией. Транскрипция происходит в ядре клетки: на участке определённого гена молекулы ДНК синтезируется мРНк. В синтезе участвует комплекс ферментов, главным из которых является РНК-полимераза.
Синтез мРНК начинается с обнаружения РНК- полимеразой особого участка в молекуле ДНК, который указывает место начала транскрипции – промотора. После присоединения к промотору РНК-полимераза раскручивает прилежащий виток спирали ДНК. Две цепи ДНК в этом месте расходятся, и на одной из них идёт синтез мРНК. Сборка рибонуклеотидов в цепь происходит с соблюдением их комплементраности нуклеотидам ДНК, а также антипараллельно по отношению к матричной цепи ДНК. В связи с тем, что РНК-полимераза способна собирать полинуклеотид лишь от 5’-конца к 3’-концу, матрицей для транскрипции может служить только одна из двух цепей ДНК, а именно та, которая обращена к ферменту своим 3’-концом. Такую цепь называют кодогенной.
Антипараллельность соединения двух полинуклеотидных цепей в молекуле ДНК позволяет РНК-полимеразе правильно выбрать матрицу для синтеза мРНК.
Продвигаясь вдоль кодогенной цепи ДНК, РНК-полимераза осуществляет точное постепенное переписывании информации до тех пор, пока она не встречает специфическую нуклеотидную последовательность – терминатор транскрипции. В этом участке РНК-полимераза отделяется как от матрицы ДНК, так и вновь синтезированной мРНК. Фрагмент молекулы ДНК, включающий промотор, транскрибируемую последовательность и терминатор, образует единицу транскрипции – транскриптон.
Дальнейшие исследования показали, что в процессе транскрипции синтезируется так называемая про-мРНК – предшественник зрелой мРНК, участвующей в трансляции. Про-мРНК имеет значительно большие размеры и содержит фрагменты, не кодирующие синтез соответствующей полипептидной цепи. В ДНК наряду с участками, кодирующими рРНК, тРНК и полипептиды, имеются фрагменты, не содержащие генетической информации. Они получили название интронов в отличие от кодирующих фрагментов, которые называются экзонами. Интроны обнаружены на многих участках молекул ДНК. Например, в одном гене –участке ДНК, кодирующем овальбумин курицы, содержится 7 интронов, в гене сывароточного альбумина крысы – 13 интронов. Длина интрона бывает различной – от 200 до 1000 пар нуклеотидов ДНК. Интроны считываются (транскрибируются) одновременно с экзонами, поэтому пор-мРНК значительно длиннее, чем зрелая мРНК. Созревание, или процессинг, мРНК предполагает модифицирование первичного транскрипта и удаление из него некодирующих интронных участков с последующим соединением кодирующих последовательностей – экзонов. В ходе процессинга из про-мРНК специальными ферментами «вырезаются» интроны, а фрагменты экзона «сращиваются» между собой в строгом порядке. В процессе сплайсинга образуется зрелая мРНК, которая содержит ту информацию, которая необходима для синтеза соответствующего полипептида, то есть информативную часть структурного гена.
Значение и функции интронов до сих пор ещё не совсем выяснены, но установлено, что если в ДНК считываются только участки экзонов, зрелая мРНК не образуется. Процесс сплайсинга изучен на примере работы овальбумина. Он содержит один экзон и 7 интронов. Сначала на ДНК синтезируется про-мРНК, содержащая 7700 нуклеотидов. Затем про-мРНК число нуклеотидов уменьшается до 6800, затем – до 5600, 4850, 3800, 3400 и т.д. до 1372 нуклеотидов, соответствующих экзону. Содержащая 1372 нуклеотида мРНК выходит из ядра в цитоплазму, попадает на рибосому и синтезирует соответствующий полипетид.
Следующий этап биосинтеза – трансляция – происходит в цитоплазме на рибосомах при участи тРНК.
Транспортные РНК синтезируются в ядре, но функционируют в свободном состоянии в цитоплазме клетки. Одна молекула тРНК содержит 75-95 нуклеотидов и имеет довольно сложную структуру, напоминающую лист клевера. В ней выделяют четыре части, которые имеют особо важное значение. Акцепторный «стебель» образуется путём комплементарного соединения двух концевых частей тРНК. Он состоит из 7 пар оснований. 3’-конец это стебля несколько длиннее и формирует одноцепочечный участок, который заканчивается последовательностью ЦЦА со свободной ОН группой – акцепторный конец. К этому концу присоединяется транспортируемая аминокислота. Остальные три ветви представляют собой комплементарно спаренные последовательности нуклеотидов, которые заканчиваются неспаренными участками, образующими петли. Средняя из этих ветвей – антикодоновая – состоит из 5 пар и содержит в центре своей петли антикодон. Антикодон – это 3 нуклеотида, комплементарные кодону мРНК, который шифрует аминокислоту, транспортируемую данной тРНК к месту синтеза пептида.
Присоединению аминокислоты к тРНК предшествует её активация ферментом аминоацил-тРНК-синтетазой. Этот фермент специфичен для каждой аминокислоты. Активированная аминокислота прикрепляется к соответствующей тРНК и доставляется ею на рибосому.
Центральное место в трансляции принадлежит рибосомам – рибонуклеопротеиновым органоидам цитоплазмы, во множестве в ней присутствующим. Размеры рибосом у прокариот в среднем 30*30*20 нм, у эукариот – 40*40*20 нм. Обычно их размеры определяют в единицах седиментации (S) – скорости осаждения при центрифугировании в соответствующей среде. У бактерий кишечной палочки рибосома имеет величину 70S и состоит из 2 субчастиц, одна из которых имеет константу 30S, вторая 50S, и содержит 64% рибосомальной РНК и 36% белка.
Установлено, что в клетках животных полипептидная цепь за одну секунду удлиняется на 7 аминокислот, а мРНК продвигается на рибосоме на 21 нуклеотид. У бактерий этот процесс протекает в 2-3 раза быстрее.
Следовательно, синтез первичной структуры белковой молекулы – полипептидной цепи – происходит на рибосоме в соответствии с порядком чередования нуклеотидов в матричной рибонуклеиновой кислоте – мРНК.
Биосинтез белка (трансляция) – важнейший этап реализации генетической программы клеток, в процессе которого информация, закодированная в первичной структуре нуклеиновых кислот, переводится в аминокислотную последовательность синтезируемых белков. Иными словами, трансляция – это перевод четырех буквенного (по числу нуклеотидов) «языка» нуклеиновых кислот на двадцатибуквенный ( по числу протеиногенных аминокислот) «язык» белков. Перевод осуществялется в соответствии с правилами генетического кода.
Обратная транскрипция — это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.
Обратная транскриптаза, обладая еще и активностью РНК-азы Н, удаляет РНК в гибриде с ДНК, а за счет идентичности str3 и str5 этот одноцепочечный участок ДНК взаимодействует с 3′-концом второй молекулы РНК, которая служит матрицей для продолжения синтеза цепи ДНК.
Затем РНК-матрица уничтожается и по образовавшейся цепи ДНК строится комплементарная.
Образованная молекула ДНК длиннее РНК. Она содержит LTR (U3 str 3(5) U5). В форме провируса она находится в геноме клетки хозяина. При митозе и мейозе передается дочерним клеткам и потомкам.
Некоторые вирусы (такие как ВИЧ, вызывающий СПИД), имеют возможность транскрибировать РНК в ДНК. ВИЧ имеет РНК-геном, который встраивается в ДНК. В результате, ДНК вируса может быть объединено с геномом клетки-хозяина. Главный фермент, ответственный за синтез ДНК из РНК, называется ревертазой. Одной из функций ревертазы является создание комплементарной ДНК (кДНК) из вирусного генома. Ассоциированый фермент рибонуклеаза H расщепляет РНК, а ревертаза синтезирует кДНК из двойной спирали ДНК. кДНК интегрируется в геном клетки-хозяина с помощью интегразы. Результатом является синтез вирусных протеинов клеткой-хозяином, которые образуют новые вирусы
Биосинтез белка. №27 ЕГЭ.
ВВЕДЕНИЕ.
Перед тем как начать печатать эту статью наша группа отследила в каких заданиях ЕГЭ учащиеся совершают большинство ошибок. Этими заданиями оказались: номер 27 из второй части и несколько номеров из первой, в которых проверяется знание темы «Биосинтез белка».
Тема 1: Нуклеиновые кислоты — что это?
В состав каждого нуклеотида входят:
• Остаток фосфорной кислоты.
Строение ДНК.
ДНК — это полимерное соединение с постоянным (стабильным) содержанием в клетке. ДНК содержится почти исключительно в ядре клетки.
• По своей структуре молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали.
• ДНК хранит информацию о структуре белка и «храниться» в хромосомах, которые находятся в ядре.
P.S. именно белок определяет наше разнообразие.
Важно знать! Создана модель структуры ДНК в 1953 г. Д. Уотсоном и Ф. Криком, за что оба были удостоены Нобелевской премии.
Основной структурной единицей одной цепи является нуклеотид, состоящий из азотистого основания, дезоксирибозы и фосфатной группы. ДНК содержит 4 вида азотистых оснований: аденин (А), тимин (Т), гуанин (Г), цитозин (Ц).
Азотистые основания подходят друг к другу настолько близко, что между ними возникают водородные связи.
Четко проявляется в их расположении важная закономерность: аденин (А) одной цепи связан с тимином (Т) другой цепи двумя водородными связями, а гуанин (Г) одной цепи связан тремя водородными связями с цитозином (Ц) другой цепи, в результате чего формируются пары А=Т и Г≡Ц.
Такая способность к избирательному соединению нуклеотидов называется комплементарностью, т. е. пространственное и химическое соответствие между парами нуклеотидов, или Правилом Чаргаффа.
Строение РНК.
РНК содержит 4 азотистых основания: Аденин (А), Урацил (У), Гуанин (Г), Цитозин (Ц).
По выполняемым функциям среди РНК выделяют: транспортные, информационные (матричные) и рибосомные.
Обратите внимание на схему ниже — а особенно на слово «антикодон». Что это? Антикодон — это триплет нуклеотидов на верхушке тРНК. И определённая последовательность этих нуклеотидов определяет 1 конкретную аминокислоту, которую данная молекула тРНК будет переносить. Например, если на верхушке тРНК — антикодон имеет последовательность ЦАУ (цитозин, аденин, урацил) — то эта тРНК будет переносить аминокислоту Валин.
• Информационная (матричная) РНК (иРНК, мРНК) — одноцепочечная молекула, которая образуется в результате транскрипции на молекуле ДНК (копирует гены) в ядре и несет информацию об одной белковой молекуле к месту синтеза белка в рибосомах. О ней мы ещё подробно поговорим.
• Рибосомные РНК (рРНК) — самые крупные одноцепочечные молекулы, образующие вместе с белками сложные комплексы, поддерживающие структуру рибосом, на которых идет синтез белка. На долю рРНК приходится около 90% от общего содержания РНК в клетке. Т.е. всё что Вы должны о ней понимать — это то что она входит в состав рибосом, т.е. образует рибосомы.
Тема 2: Биосинтез белка.
1-ый этап биосинтеза. Транскрипция.
Процесс транскрипции:
Если в транскрибируемой нити ДНК (с которой идёт копирование) стоит нуклеотид Г — то в составе иРНК это будет Ц;
Если в транскрибируемой нити ДНК (с которой идёт копирование) стоит нуклеотид Т— то в составе иРНК это будет А;
Если в транскрибируемой нити ДНК (с которой идёт копирование) стоит нуклеотид А— то в составе иРНК это будет У (т.к. в состав РНК не входит тимин Т). и т.д.
2-ой этап биосинтеза. Введение.
Перед тем как мы перейдём к следующему этапу — стоит ввести терминологию. Вам должны быть знакомы понятия триплет, кодон и антикодон.
Антикодон — это триплет нуклеотидов на верхушке тРНК
*с ним мы уже познакомились*
Теперь потихоньку будем с Вами приходить к понятиям триплет и кодон. Полученная при транскрипции молекула иРНК служит матрицей (основой) для синтеза полипептида (белка) на рибосомах, я думаю это понятно. Теперь давайте вспомним из чего состоит белок? А белок состоит из аминокислот. Вот они:
Так вот белок состоит из последовательности этих аминокислот, выглядит это так:
Теперь мы знаем, что цель биосинтеза белка — создать вот такую цепочку аминокислот (это и есть белок). А эта цепь создаётся на матрице иРНК, которая является копией определённой нити ДНК. Понятно? Ну хорошо 🙂
Так вот, теперь суть всего этого «введения»: каждую аминокислоту кодирует три нуклеотида. Теперь обещанная терминология.
Триплет — это участок ДНК (ДНК. — запомните), который состоит из 3-ёх нуклеотидов и кодирует определённый вид аминокислоты.
Кодон — это участок иРНК (иРНК. — запомните), который состоит из 3-ёх нуклеотидов и кодирует определённую аминокислоту. Но ещё раз напомню, что иРНК — это просто копия какой-либо нити ДНК.
Посмотрите на эту схему:
2-ой этап биосинтеза. Трансляция.
Полученная при транскрипции молекула иРНК служит матрицей для синтеза белка на рибосомах. Триплеты иРНК, кодирующие определенную аминокислоту, называются кодоны, на всякий случай скажу это ещё раз.
В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону иРНК.
А теперь ещё раз напоминаю, что каждая молекула тРНК способна переносить строго определенную аминокислоту!
Вывод выше — это Ваш ключ к пониманию этой темы. Если Вы это не поняли — то перечитайте ещё пару раз и взгляните на схему ниже.
Итог 2-ой темы.
Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.
Процесс биосинтеза белка состоит из двух этапов: транскрипции и трансляции.
P.S. Каждый этап биосинтеза катализируется соответствующим ферментом и обеспечивается энергией АТФ.
Пояснение: носителем генетической информации является ДНК, расположенная в клеточном ядре. В ходе транскрипции участок двуцепочечной ДНК «разматывается», а затем на одной из цепочек синтезируется молекула иРНК.
Информационная (матричная) РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности.
Формируется цепочка иРНК, представляющая собой точную копию второй (нематричной) цепочки ДНК (только вместо тимина включен урацил). Так информация о последовательности аминокислот в белке переводится с «языка ДНК» на «язык РНК». Как и в любой другой биохимической реакции в этом синтезе участвует фермент — РНК-полимераза.
2. Трансляция — это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.
Пояснение: на тот конец иРНК, с которого нужно начать синтез белка, нанизывается рибосома. Она движется вдоль иРНК прерывисто, «скачками», задерживаясь на каждом триплете приблизительно 0,2 секунды. За это время молекула тРНК, антикодон которой комплементарен кодону, находящемуся в рибосоме, успевает распознать его. Аминокислота, которая была связана с этой тРНК (аминокислоты доставляются к рибосомам транспортными РНК), отделяется от «черешка» тРНК и присоединяется с образованием пептидной связи к растущей цепочке белка. В тот же самый момент к рибосоме подходит следующая тРНК (антикодон которой комплементарен следующему триплету в иРНК), и следующая аминокислота включается в растущую цепочку.
Синтез белка продолжается до тех пор, пока на рибосоме не окажется один из трёх стоп-кодонов (УАА, УАГ или УГА). После этого белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную и четвертичную структуры.
Тема 3: Практика. Порешаем несколько заданий из ЕГЭ?
Ответ:
1) Первым делом — просто перепишем эту последовательность ДНК, вот так:
*для удобства — можно разделить эту последовательность на триплеты, небольшими пробелами*
ДНК: АТГ ГЦТ ЦТЦ ЦАТ ТГГ
2) По заданию нас просят построить по этой последовательности ДНК построить иРНК, строим! *мы это умеем*
Подсказка: А будет переходить У (тимина в РНК нет), Г будет переходить Ц и наоборот, а Т будет переходить в А.
иРНК: УАЦ ЦГА ГАГ ГУА АЦЦ
3) Теперь нужно выяснить количество тРНК и нуклеотидный состав их антикодонов. Ну давайте сначала определим число тРНК — оно будет равняться числу кодонов на иРНК. Считаем… Будет 5 тРНК! А теперь составим их нуклеотидный состав по принципу комплиментарности. Отмечу, что у нас всё ещё не будет Тимина — т.к. мы составляем цепь РНК. Иво ттак легко по принципу комплиментарности мы всё составили 🙂
тРНК: АУГ, ГЦУ, ЦУЦ, ЦАУ, УГГ
!ПРАВИЛА ОФОРМЛЕНИЯ ЗАДАНИЯ №27 ЕГЭ!
2. Цепочки нужно строить строго друг под другом, буква под буквой!
3. Когда мы пишем последовательность нуклеотидов в тРНК, то мы разделяем антикодоны запятыми (т.к. каждый из них — участок отдельной структуры)!
НО! ОЧЕНЬ ВАЖНО! Если в задании сказано «петля тРНК» — то запятыми разделять ничего не нужно. Если вы этого не заметите и поставите запятые — это будет грубейшая ошибка!
Видим в задании «петля тРНК» — в тРНК запятыми антикодоны не разделяем. Например, в задании выше слова «петля» не было — поэтому я разделял антикодоны запятыми.
4. Нужно обязательно пояснять свои действия. И обязательно указать, что «все свои цепочки я строю по принципу комплиментарности, или по Правилу Чаргаффа». Если пояснения не будет — вы потеряете 1 балл!
Тема 3: Продолжение решения задач.
Ответ:
тРНК: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ *ставлю запятые, слово «петля» нет»
иРНК: ААУ ЦЦГ ГЦГ УАА ГЦА *без знаков препинания*
1 цепь ДНК: ТТА ГГЦ ЦГЦ АТТ ЦГТ *не забудь про то, что в ДНК есть Тимин*
2 цепь ДНК: ААТ ЦЦГ ГЦГ ТАА ГЦА *помните — нас попросили написать последовательность каждой цепи молекулы ДНК*
*Теперь считаем А, Т, Г, Ц в обоих цепях ДНК*
В молекуле ДНК А=Т=7, число Г=Ц=8.
Все свои цепи нуклеиновых кислот строил по Правилу Чаргаффа.
Задание 27. ЕГЭ.
В одной молекуле ДНК нуклеотиды с тимином (Т) составляют 24% от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.
Ответ: *он должен выглядеть так*
1) Аденин (А) комплементарен тимину (Т), а гуанин (Г) — цитозину (Ц), поэтому количество комплементарных нуклеотидов одинаково;
2) Количество нуклеотидов с аденином составляет 24%, т.к. количество нуклеотидов с тимином 24%
3) Количество гуанина (Г) и цитозина (Ц) вместе составляют 52%, а каждого из них — 26%.
Ответ: *он должен выглядеть так*
Ответ: *он должен выглядеть так*
1) Одна т-РНК транспортирует одну аминокислоту. Так как в синтезе белка участвовало 30 т-РНК, белок состоит из 30 аминокислот.
2) Одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодирует 30 триплетов.
3) Триплет состоит из 3 нуклеотидов, значит количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, равно 30х3=90.
Ответ: *он должен выглядеть так*
1) Белок содержит 52 аминокислоты, т. к. одну аминокислоту кодирует один триплет (156:3).
2) т-РНК транспортирует к месту синтеза белка одну аминокислоту, следовательно, всего в синтезе участвуют 52 т-РНК.
3) В гене первичную структуру белка кодируют 52 триплета, так как каждая аминокислота кодируется одним триплетом.
Ответ: *он должен выглядеть так*
1) Если и-РНК синтезируется на верхней цепи ДНК, то её фрагмент будет УУУ ААА ЦЦЦ ГГГ.
2) Фрагмент белка: фен–лиз–про–гли.
3) Если белок кодируется нижней цепью, то иРНК — ААА УУУ ГГГ ЦЦЦ.
4) Фрагмент белка: лиз–фен–гли−про
ЭПИЛОГ.
Очень надеюсь, что эта статья поможет Вам разобраться в этой теме. Оставляйте свои комментарии, ставьте лайки и обязательно задавайте вопросы 🙂