arcsin sinx чему равен
Арксинус. Решение простейших уравнений с синусом. Часть 2
Арксинусом числа \(a\) (\(a∈[-1;1]\)) называют число \(x∈[-\frac<π><2>;\frac<π><2>]\) синус которого равен \(a\) т.е.
Проще говоря, арксинус обратен синусу.
На круге это выглядит так:
Как вычислить арксинус?
Например, вычислите значение арксинуса:
а) Синус какого числа равен \(-\frac<1><2>\)? Или в более точной формулировке можно спросить так: если \(\sin x=-\frac<1><2>\), то чему равен \(x\)? Причем, обратите внимание, нам нужно такое значение, которое лежит между \(-\frac<π><2>\) и \(\frac<π><2>\). Ответ очевиден:
б) Синус какого числа равен \(\frac<\sqrt<3>><2>\)? Кто-то вспоминает тригонометрический круг, кто-то таблицу, но в любом случае ответ \(\frac<π><3>\).
Тригонометрический круг со всеми стандартными арксинусами:
Зачем нужен арксинус? Решение уравнения \(\sin x=a\)
Чтобы понять зачем придумали арксинус, давайте решим уравнение: \(\sin x=\frac<1><2>\).
Это не вызывает затруднений:
А теперь решите уравнение: \(\sin x=\frac<1><3>\).
Вот тут-то на помощь и приходит арксинус! Значение правой точки равно \(\arcsin\frac<1><3>\), потому что известно, что синус равен \(\frac<1><3>\). Длина дуги от \(0\) до правой точки тогда тоже будет равна \(\arcsin\frac<1><3>\). Тогда чему равно значение второй точки? С учетом того, что правая точка находится на расстоянии равному \(\arcsin\frac<1><3>\) от \(π\), то её значение составляет \(π- \arcsin\frac<1><3>\).
Ок, значение этих двух точек нашли. Теперь запишем полный ответ: \( \left[ \begin
С арксинусом – бесконечное количество.
Пример. Решите тригонометрическое уравнение: \(\sin x=\frac<1><\sqrt<3>>\).
Решение:
Пример. Решите тригонометрическое уравнение: \(\sin x=\frac<1><\sqrt<2>>\).
Значит в ответе вместо арксинусов нужно написать \(\frac<π><4>\).
Пример. Решите тригонометрическое уравнение: \(\sin x=\frac<7><6>\).
Решение:
И вновь тот, кто поторопился написать \( \left[ \begin
Думаю, вы уловили закономерность.
Если \(\sin x\) равен не табличному значению между \(1\) и \(-1\), то решения будут выглядеть как: \( \left[ \beginx= \arcsin a +2πn, n∈Z\\ x=π- \arcsin a +2πl, l∈Z\end\right.\)
Арксинус отрицательного числа
Прежде чем научиться решать тригонометрические уравнения с отрицательным синусом советую запомнить формулу:
Если хотите понять логику этой формулы, внимательно рассмотрите картинку ниже:
Удивил последний пример? Почему в нем формула не работает? Потому что запись \(\arcsin(-\frac<\sqrt<7>><2>)\) в принципе неверна, ведь \(-\frac<\sqrt<7>> <2>Синус
Тригонометрические уравнения